Autonomous Casualty Evacuation: State of the Art and Beyond

Presented by: Gregory Nichols

4695 Millennium Drive Belcamp, MD 21017-1505 hdiac.dtic.mil Office: 443-360-4600 Fax: 410-272-6763 Email: contact@hdiac.org

How Did We Get Here? Mostly...

+ MHSRS 2024 POSTER SESSION

Methodology:

- 1. Literature search/review
 - 2020 to the present
 - Historical documents of significance
 - Online search: Google to identify relevant, recent news, documents, and experts
 - DTIC R&E Gateway, Google Scholar, Web of Science, other relevant databases
- 2. Interviews
- 3. Demonstrations

Background

"The conflict in Ukraine has demonstrated that modern warfare is unthinkable without the widespread use of unmanned vehicles." – Ruslan Pukhov, Director, Centre for Analysis of Strategies and Technologies

DRIVING FORCES OF AUTONOMOUS CASUALTY EVACUATION (ACE)

Source: Nichols G. "State-of-the-Art Analysis of Platforms and Technical Challenges in Autonomous Casualty Evacuation." Poster presentation, 2024 Military Health System Research Symposium, Kissimmee, FL, 27 August 27 2024.

Future Battlefields?

Source: Office of the Air Force Surgeon General. "Medical Operations in Denied Environments Operational Concept." Falls Church, VA, 2 November 2015.

War in Ukraine

- On 24 February 2022, Russian forces invaded Ukraine.
- Current estimates (Nov. 2024) of military casualties (killed and wounded) on both sides are nearly 1 M dead and wounded – not including civilians.
- Autonomy is playing a key role.

Source: <u>https://armyrecognition.com/defense_news_december_2022_global_security_army_industry/germany_in_collaboration_with_estonia_to_deliver_14_themis_robots_to_ukraine.html https://armyrecognition.com/ukraine_-_russia_conflict_war_2022/russian_soldiers_deploy_homemade_ugv_for_medical_evacuation_in_ukraine.html</u>

Challenges and Gaps

"There is a big difference between transporting a person and transporting bullets." –Jose Salinas, USAISR

Challenges and Gaps – Expert Interviews

Challenges	Gaps
 Strain of network Allocation of bandwidth Robotic combat vehicle (RCV) platform controlled by stations; lots of intricate communications Nongovernment item platforms Autonomous mobility and decision-making Data curation Ethics and policy discussion U.S. Food and Drug Administration approval Policy and ethical issues (autonomous systems making care decisions) Hard-to-get wireless signal when rotor goes off Requirements creep Downwash Brownouts On the medical side, no control of platform Question of how to make sure people develop things for bullets and can still have requirements for casualty 	 Continuation of perception sensors Computing at the edge Procurement Quantitative assessment of new concepts and how they affect outcomes Test outcomes—mapping back Keeping a human in the loop No communications or wide open Communication with vehicle transport and casualty health Data-training models (prehospital)

Challenges and Gaps – Decision Tree

Design Considerations for ACE Platforms

"We don't pick the vehicle."

 Existing system—add autonomy (autonomous module)

or

- 2. Design from scratch:
 - Some range of autonomy

or

Autonomous-ready (capable)

2. Add safety features to vehicle (safe ride)

Outfit for CASEVAC

- 3. Integrate connectedness between autonomous vehicle control and change in patient status
- 4. Add patient monitoring/autonomous or semi-autonomous medical care systems (telemedicine or remote med capabilities)

Source: Nichols

Ground Systems and Vehicles

"While theoretically very appealing, the practicalities of retrieving a potentially incapacitated or unconscious casualty pose real difficulties yet to be entirely overcome." - Pilgrim and Fitzgerald

Crawling/Walking Systems

Big Dog

(Source: https://www.darpa.mil/about-us/timeline/big-dog)

LS3 Pack Mule

(Source: <u>https://www.darpa.mil/about-</u> us/timeline/legged-squad-support-system)

FDNY's Robotic Dog (Boston Dynamics)

(Source: <u>https://www.smithsonianmag.com/smart-news/robot-dog-surveys-collapsed-new-york-parking-garage-180982028/</u>)

Traditional Rolling Systems

Expeditionary Modular Autonomous Vehicle (EMAV) [1]

Tracked Hybrid Modular Infantry System THeMIS Cargo CASEVAC (Milrem Robotics) [4]

Mission Master (Rheinmetal) [2]

Robotic Combat Vehicle (RCV) (General Dynamics Land Systems; Oshkosh Defense; HDT Global; Textron Systems) [3]

Soldiers Conduct Urban Assault with Human Machine Integration at Project Convergence Capstone 4 [5]

Other Things?

Representation only; not Marom-Dolphin Wild Goose

"Wild Goose" Marom-Dolphin

ResQbot 2.0 Robotics and Mechatronics Lab - VT

(Source: Saputra, R. P., Rakicevic, N., Kuder, I., Bilsdorfer, J., Gough, A., Dakin, A., de Cocker, E., Rock, S., Harpin, R., & Kormushev, P. (2021).
ResQbot 2.0: An Improved Design of a Mobile Rescue Robot with an Inflatable Neck Securing Device for Safe Casualty Extraction. Applied Sciences, 11(12), 5414. <u>https://doi.org/10.3390/app11125414</u>)

Flight Systems and Vehicles

"Lack of air superiority coupled with anti-access/area denial will foster a dependence on ground-based evacuation systems, both manned and autonomous. However, these too will be degraded." - Wissemann

Traditional-Design/Conversion

Aircrew Labor In-cockpit Automation System (ALIAS) - Sikorsky Aircraft (Source: <u>https://dustoff.org/dustoffer-newsletter/casualty-evacuation-and-the-army-of-2030-2040-army-aviations-vital-role/</u>)

K-MAX Kaman Air Vehicles [6]

KARGO Kaman Air Vehicles / Near-Earth Autonomy [7]

V-280 Valor – Bell Helicopter [8]

VTOL and Unconventional Systems

ALIA - BETA Technologies [9]

Cormorant - Tactical Robotics [10]

T400 - Malloy Aeronautics [11]

Aerial Reconfigurable Embedded System (ARES) – Piasecki Aircraft Corporation [12]

DP-14 - DPI UAV Systems [13]

MERT-R MEDEVAC UAV – Pulse Science [14]

Waterborne Systems and Vehicles

"[CASEVAC] and MEDEVAC are complimentary capabilities, and when used efficiently and effectively reduce Soldier mortality." - Army Techniques Publication 4-02.2

Forerunners and Future Options

Integrated Battle Problem 23.2

Expeditionary Medical Ship (EMS)

Source: <u>https://seapowermagazine.org/u-s-navy-deployment-putsleidos-autonomy-on-display/</u>

Source: <u>https://www.navalnews.com/naval-news/2023/12/austal-usa-wins-u-s-navy-contract-for-expeditionary-medical-ship/</u>

Example Platforms

Common Unmanned Surface Vehicle (CUSV) – Textron Systems Source: <u>https://www.usni.org/magazines/proceedings/2021/february/dro</u> <u>nes-canspeed-medical-care-search-and-rescue</u>

USNS Apalachicola (EPF 13) - Austal USA, L3 Harris, and General Dynamics Mission Systems (Source: https://news.usni.org/2023/02/1 6/crew-optional)

T38 Devil Ray – MARTAC (Source: https://martacsystems.com/prod ucts/t38/)

۲

Wrap-up

"The way of warfare will fundamentally change from irregular warfare with infinite resources to high-intensity conflict with limited capabilities. Creative solutions will be necessary to ensure timely logistical support. Evacuation will shift to platforms of convenience, potentially supplemented with autonomous vehicles." – Michael Wissemann

ACE – A Deadly Business?

Russian Ministry of Defence – 2020

https://en.wikipedia.org/wiki/Ministry of Defence (Russia)#/media/File:Middle emblem of the Min istry of Defence of the Russian Federation (21.0 7.2003-present).svg

THeMIS, Milrem Robotics – 2022/2023

https://www.businessinsider.com/russianresearchers-offer-bounty-for-capture-of-themisrobot-ukraine-2022-9

Ruslan Pukhov, Director of CAST – 2022-2024

https://www.abc.net.au/news/2016-07-08/natoswarsaw-summit-underway-in-the-glare-of-therussian-bear/7579098

Armin Papperger, CEO Rheinmetal - 2024

https://www.rheinmetall.com/en/company/mana gement/executive-board/executive-boardoverview

As a Reminder – Where Are We Heading?

More Cross-Sector Research Collaboration?

What's Next?

- A state-of-the-art report: Part 2?
 - More aspects of ACE?
 - Autonomous CBRNE response?
 - Autonomous medical care?
 - Autonomy in disaster response?
- Community of practice?
- Workshop or symposium?
- All of these or some portion?
- Something else?

(Source: https://www.auvsi.org/us-armyselects-near-earth-autonomy-lift-life-savingautonomous-blood-and-casevactransportation)

Jeremy C Pamplin, Mason H Remondelli, Nathan Fisher, Matthew T Quinn, Fully Autonomous Casualty Care on the Future Battlefield, Military Medicine, 2024;, usae377, https://doi.org/10.1093/milmed/usae377

Questions / Contact / Work With Us

Gregory Nichols greg.nichols@orau.org (865) 223-8625

John Clements john.clements@hdiac.org

References/Image Sources (1/2)

Unless otherwise noted, images/graphics are sourced from: Nichols, G. State-of-the-Art Report: "Autonomous Platforms for Casualty Evacuation." Homeland Defense and Security Information Analysis Center, April 2024.

Slide 13: Big Dog - Big Dog. DARPA . (n.d.-a). <u>https://www.darpa.mil/about-us/timeline/big-dog</u>; LS3 Pack Mule - LS3 Pack Mule. DARPA . (n.d.-b). <u>https://www.darpa.mil/about-us/timeline/legged-squad-support-system</u>

Slide 14: [1] EMAV - <u>https://www.defense.gov/Multimedia/Photos/igphoto/2002750986/;</u> [2] Mission Master - <u>https://www.rheinmetall.com/en/products/unmanned-vehicles/unmanned-vehicles/mission-master-a-ugv;</u> [3] RCV - <u>https://www.nationaldefensemagazine.org/articles/2023/12/12/army-lays-out-plans-for-obotic-combat-vehicles;</u> [4] THeMIS - <u>https://armyrecognition.com/defense news december 2022 global security army industry/germany in collaboration with estonia to de liver 14 themis robots to ukraine.html; [5] https://www.dvidshub.net/image/8297194/soldiers-conduct-urban-assault-with-human-machine-integration-project-convergence-capstone-4</u>

Slide 15: Wild Goose - Wild Goose. Marom Dolphin. (n.d.). <u>https://marom-dolphin.com/pages/wild-goose</u>; Rocky - Humanoid robot - biped base: SuperDroid Robots: Inspection Robots, tactical robots, Custom Robots. SuperDroid Robots | Inspection Robots, Tactical Robots, Custom Robots. (20 November 2023). <u>https://www.superdroidrobots.com/product/humanoid-robot-biped/</u>; ResQbot 2.0 - Saputra, R. P., Rakicevic, N., Kuder, I., Bilsdorfer, J., Gough, A., Dakin, A., de Cocker, E., Rock, S., Harpin, R., & Kormushev, P. (2021). ResQbot 2.0: An Improved Design of a Mobile Rescue Robot With an Inflatable Neck Securing Device for Safe Casualty Extraction. Applied Sciences, 11(12), 5414. <u>https://doi.org/10.3390/app11125414</u>

Slide 17: [6] KARGO – KMAX - <u>https://nextpittsburgh.com/latest-news/near-earthautonomy-creates-a-self-driving-helicopter-nowhiring/;</u> [7] KARGO - <u>https://kaman.com/brands/kaman-air-vehicles/kargo/defense/;</u> [8] V-280 Valor https://www.airmedandrescue.com/latest/news/power-fvl-how-will-bell-v280-impact-csarand-military-medevac-operations

References/Image Sources (2/2)

Slide 18: [9] ALIA - <u>https://www.airandspaceforces.com/air-force-aims-to-get-more-evtol-platforms-intotesting-exercises-in-2023/</u>; [10] Cormorant - <u>https://www.wired.com/story/tactical-robotics-cormorantautonomous/</u>; [11] T400 - Long, B. Personal communication. Malloy Aeronautics, London, United Kingdom, 16 May 2024.; [12] ARES - Falls, V. Personal communication. 711th Human Performance Wing, Wright Patterson Air Force Base, OH, 17 April 2024.; [13] DP-14 - <u>https://www.dragonflypictures.com/products/dp-14-multi-mission-uas/</u>; [14] MERT-R -https://www.shephardmedia.com/news/air-warfare/ds-2022-thailand-debuts-mert-rmedevac-uav/

Slide 23: Russian MoD -

https://commons.wikimedia.org/wiki/File:Middle_emblem_of_the_Ministry_of_Defence_of_the_Russian_Federation (21.07.2003present).svg?uselang=en#Licensing; Ruslan Pukhov - ABC News. (8 July 2016). NATO summit in Warsaw underway in glare of Russian bear. <u>https://www.abc.net.au/news/2016-07-08/natos-warsaw-summit-underway-in-the-glare-of-the-russian-bear/7579098</u>; Armin Papperger - Executive Board of Rheinmetall AG. Rheinmetall. (n.d.). <u>https://www.rheinmetall.com/en/company/management/executiveboard/executive-board-overview</u>

Slide 25: US Army selects Near Earth Autonomy & Lift for Life Saving Autonomous Blood and Casevac Transportation System. (1 October 2024). AUVSI. <u>https://www.auvsi.org/us-army-selects-near-earth-autonomy-lift-life-savin-autonomous-blood-and-casevac-transportation;</u> Summitting Mount Autonomy - Jeremy C Pamplin, Mason H Remondelli, Nathan Fisher, Matthew T Quinn, Fully Autonomous Casualty Care on the Future Battlefield, Military Medicine, 2024. usae377, <u>https://doi.org/10.1093/milmed/usae377</u>

