

Emerging Capabilities for Evaluating Cognitive and Oculomotor Function in Service Members With

Traumatic Brain Injury

Mark L. Ettenhofer, Ph.D.

17 July 2024

Homeland Defense & Security Information Analysis Center Webinar Series

Mark L. Ettenhofer, Ph.D.

Senior Research Neuropsychologist General Dynamics Information Technology Support to Traumatic Brain Injury Center of Excellence (TBICoE) Naval Medical Center San Diego (NMCSD)

> Associate Professor of Psychiatry University of California, San Diego

Disclosures and Disclaimers

- The views expressed in this presentation are those of the authors and do not necessarily represent the official policy or position of the Defense Health Agency (DHA), Department of Defense (DoD), or any other U.S. government agency. This work was prepared under Contract HT0014-22-C-0016 with DHA Contracting Office (NM-CD) HT0014 and, therefore, is defined as U.S. Government work under Title 17 U.S.C.§101. Per Title 17 U.S.C.§105. Copyright protection is not available for any work of the U.S. Government. Oral Presentation at the Homeland Defense & Security Information Analysis Center (HDIAC) Webinar Series. For more information, please contact <u>dha.TBICOEinfo@health.mil</u>. UNCLASSIFIED
- Technology described in this presentation is included in U.S. Patent Application No. 61/779,801, U.S. Patent Application No. 14/773,987, European Patent Application No. 14780396.9, and International Patent Application No. PCT/US2014/022468. Dr. Ettenhofer is a named inventor on these patents and provides consulting related to this technology to industry partners.

Presentation Overview

- Traumatic Brain Injury (TBI) Basics
 - Common Effects, Prevalence, and Recovery
- Assessment of TBI
 - Current Capabilities and Future Requirements
- Introduction to Eye Movements
 - Oculomotor and Cognitive Networks
- Neurocognitive Eye Tracking
 - Approaches, Scientific Validation, and Ongoing Research
- Summary and Discussion

TBI Basics

- TBI is a traumatically induced change in brain function
- It can be caused by blunt impact, blast, or rapid acceleration/deceleration
- Neural injury can occur in many different places, potentially accumulating across multiple injuries
- To identify TBI effects on an individual, we must <u>evaluate multiple</u>, <u>different</u> cognitive and motor systems

(Image by Brett Robinson, public domain.)

Potential Effects of TBI

- **Cognitive:** Impaired attention, executive functions, psychomotor speed, memory
- Sensory: Dizziness, poor balance, abnormal eye movements
- Physical: Insomnia, headache
- Emotional: Irritability, depression, anxiety
- Reduced operational performance

(U.S. Air Force [USAF] photo by SSgt. Jonathon Fowler.)

Classifying TBI Severity: DoD/Veterans Affair Criteria

Severity	AOC	LOC	ΡΤΑ	 AOC: Alteration of Consciousness
Mild	≤24 hr	0–30 min	≤24 hr	• LOC: Loss of
Moderate	>24 hr	>30 min <24 hr	>24 hr <7 days	ConsciousnessPTA: Post-Traumatic
Severe	>24 hr	≥24 hr	≥7 days	Amnesia Note: hr = hours, min = minutes

DOD Numbers for Traumatic Brain Injury Worldwide

2000-2023 Q2

Penetrating: 5,740

Severe: 4,763

Moderate: 55,063

Mild: 399,173

Not Classifiable: 20,814

Source: Defense Medical Surveillance System, Theater Medical Data Store provided by the Armed Forces Health Surveillance Division. Prepared by the Traumatic Brain Injury Center of Excellence. *Percent may not add to 100% due to rounding. As of August 14, 2023

Recovery From TBI: Cognitive Performance

Mean weighted effects of mild head injury on overall cognitive test performance at four follow-up epochs, + d (pooled), -- d(control). Mean weighted effects of moderate-severe traumatic brain injury on overall cognitive test performance at three follow-up epochs, + d(pooled), - d(control).

>24 months

Meta-Analysis (Source: Schretlen and Shapiro [1])

Recovery From mTBI: Symptoms and Activity

TBI Assessment: Current Approaches

- Patient Self-Report (survey, interview)
 - Strongly influenced by subjective factors
 - Not reliable for detecting injury
 - Still the primary "tool" to determine treatment
- Screeners (e.g., MACE-2, ANAM, SCAT)
 - Quick, sensitive for up to 7 days post-mTBI
- **Neuroimaging** (CT, MRI)
 - Typically normal in mTBI
- Neuropsychological Testing
 - Current "gold standard" for TBI assessment
 - Lengthy, sensitive for up to 3 months post-mTBI

Note: MACE-2 = military acute concussion evaluation-2. ANAM = automated neuropsychological assessment metrics, CT = computed tomography,

MRI = magnetic resonance imaging

(USAF photo by Robbin Cresswell.)

(Image courtesy of Health.mil.) (Image by Mikael Häggström, public domain.)

Requirements for Next-Generation TBI Assessment

- Sensitive and Specific
 - Detects subtle forms of impairment/decline
- Multimodal/Multidomain
 - Quickly assesses multiple brain systems
- Clinically Feasible and Scalable
 - Mobile, automated, low cost
- Objective and Scientifically Validated
 - Guides treatment and return-to-duty decisions

Somatomotor (Hand) vs. Oculomotor (Eye)

(Photo by Eric Pierce, public domain.)

- Function: Output
- Slower (~250 milliseconds [ms])
- More effortful and conscious
- Strongly impacted by age, intelligence, depression, motivation, etc.

(Photo by Alexander Grey, public domain.)

- Function: Input
- Faster (~150 ms)
- More automatic
- Less influenced by many common confounds

(Sources: Ettenhofer, Henshaw, and Barry [3]; Ettenhofer and Barry [4]; Ettenhofer et al. [5]; and Heitger et al. [6])

Eye Movement Basics

Eye-tracking camera measures gaze vector, pupil diameter

- Rapid saccadic eye movements acquire visual targets with help from cognitive processing
- Slower **smooth pursuit** eye movements track moving targets
- Pupil dilates/constricts in response to light, alertness, cognitive load

DANS, KÖNOCH JACPROJEKT

På jakt efter ungdomars kroppsspråk och den "synkretiska dansen", en sammansmällning av olika kulturers dans, har jag i-mitt fällarbete under hosten rort ning på olika arenor inom skolans varld. Nordiska, atrikanska, syd- och östeuropeiska ungdomar gör sina röstet hörda genom sång, musik, skrik, skraf och gestattat känslor och uttryck med hjätp av kroppsspråk och dans.

Den individuella estetiken framtråder i klåder, frisyter och symbolitska tecken som forstärker ungdomarnas "jagp(ojekt" där också (en egna stilen i kroppsförelserna spelar en betydande roll) i identiletsprövningen. Uppehållsrummet fungerar som offentlig arena där ungeomarna spelar upp sina performanceliknande kroppssower

(Image by Lucs Kho, public domain.)

(Video by Grayson Orlando, public domain.)

Distributed Neural Pathways of Eye Movement Visual Attention

SEF, supplementary eye field; sfs, superior frontal sulcus; CEF, cingulate eye field; cs, central sulcus; DLPFC, dorsolateral prefrontal cortex; pcs, precentral sulcus; FEF, frontal eye field; ips, intraparietal sulcus; ifs, inferior frontal sulcus; SMG, supramarginal gyrus; PCC, posterior cingulate cortex; SPL, superior parietal lobule; IPA, intraparietal areas; ls, lateral sulcus; AG, angular gyrus; PEF, posterior eye field; sts, superior temporal sulcus; pos, parieto-occipital sulcus; PHC, parahippocampal cortex; HF, hippocampal formation; SC, superior colliculus; RF, reticular formations.

Improving Health and Building Readiness. Anytime, Anywhere – Always

15

Neuroanatomical Model of Visual Attention

- Approach draws from work previously conducted by Posner and colleagues
- Cues elicit:
 - Time (alerting)
 - Location (orienting)
 - Conflict (executive)

⁽Source: Fan et al. [8])

Neurocognitive Eye Tracking: Bethesda Eye and Attention Measure (BEAM)

(Images generated by presentation authors.)

BEAM Test—Raw Gaze Data

	Trial T	ype: DCL			🔘 в	utton:		Fixation Locat	ion: Cente	er
imber	Type	Man Reaction	SAC Reaction	SAC Duration	SAC Latency	Left Pupil Average	Right Pupil Averag	Behavior Codes	Composite Codes	Validity
	DCL	491.27	437.38	46.88	390.5	21.299	19.526	a (397.16 ms),c (397.16 ms),b (437.38 ms),d (437.38 ms),g (-1306.21 ms),i (491.27 ms),n		n

Automatic analysis of eye movements, pupil response, button presses, and response validity

(Images generated by presentation authors.)

Ramping Up Cognitive Load: Fusion n-Back

(Images generated by presentation authors.)

DoD Fusion System: Prototype Evolution (1/3)

Desktop System (2011)

(Photo by Mark L. Ettenhofer.)

Laptop System (2015-)

(Photo by Mark L. Ettenhofer.)

DoD Fusion System: Prototype Evolution (2/3)

Wired Virtual Reality (VR) System (2018)

(Photo by Mark L. Ettenhofer.)

CAREN VR System (2019-)

(Photo courtesy of Naval Health Research Center Public Affairs.)

Note: CAREN = computer-assisted rehabilitation environment

DoD Fusion System: Prototype Evolution (3/3)

⁽Image by Sarah I. Gimbel. Used with Permission)

⁽Photo by Jenna K. Trotta, TBICoE)

Fusion Eye Tracking: Under the Hood

Data Example:

- Raw data: 8 min × 150 hertz (Hz) = ~72,000 rows of data
- Processed data: 128 test trials with saccadic and manual response time (RT) and errors and pupil response

Test	Domain	Cue	Metric(s)
BEAM	Psychomotor Speed	+•	Uncued speed
BEAM	Inhibition	$\rightarrow \bullet$	No-go errors
BEAM + n-Back	Visual/Spatial Attention	$\rightarrow \bullet$	Directional cue speed
BEAM + n-Back	Cognitive Interference	$\leftarrow \bullet$	Misdirectional cue errors, speed & consistency
BEAM + n-Back	Alertness	+ 👁	Pupil diameter (baseline)
n-Back	Cognitive Load	•	Pupillary response to targets
n-Back	Working memory	All •	Errors, speed & consistency

BEAM Score Sheet: Normal Profile (Example)

Fast and consistent, saccadic faster than manual, modest number of errors

(Image generated by presentation authors.)

BEAM Score Sheet: mTBI Profile (Example)

Slow and inconsistent saccadic RT, elevated saccadic errors

(Image generated by presentation authors.)

Identifying Persistent Effects of TBI: Validation Studies

(Source: Ettenhofer, Hershaw, and Barry [3])

(Source: Ettenhofer et al. [5])

(Source: Ettenhofer, Gimbel, and Cordero [9])

UNCLASSIFIED Higher Cognitive Load \rightarrow **Poorer Oculomotor Function After TBI**

(Source: Ettenhofer et al. [5])

Improving Health and Building Readiness. Anytime, Anywhere – Always

N = 15 Mod-Sev TBI

BEAM vs. Conventional Cognitive Screening in the NMCSD TBI Clinic

Note: SDMT = symbol digit modalities test, TMT = trail making test, NAB = neuropsychological assessment battery, N-L = number-letter, Effic = efficiency

(Source: Ettenhofer, Hungerford, and Agtarap [10])

Improving Health and Building Readiness. Anytime, Anywhere – Always

A CONTRACTOR OF CONTRACTOR OF

Embedded Validity Indicators

- BEAM distinguished "fake bad" from "best effort" and mTBI samples on par with gold standard tests of validity
- **BEAM** results accurately classified "fake bad" vs. mTBI with >90% accuracy

Neurocognitive Eye Tracking as a Predictor of Military Performance (Fusion-VR)

(Video by Hedaya Rizeq, Naval Health Research Center.)

Sensor Modalities:

- Eye tracking
- Electroencephalography shot speed/accuracy
- Gait (motion capture)
- Electromyography galvanic skin response
- Respiration
- Heart rate
- Heart rate variability

Correlation b/w Clinical and VR Eye Tracking: r_{avg} = .64**

Fusion-VR Shooting Task: Saccadic Inhibition in mTBI vs. Control

	Control	mTBI
n	12	25

BEAM-VR Task: No-Go Errors

Instructions: When you see a red arrow, do not look at or fire at the target.

Elevated no-go error rate on fusion-VR suggests significant impairment (disinhibition) on military tasks in chronic mTBI.

Improving Health and Building Readiness. Anytime, Anywhere – Always

31

Fusion-VR: Reduced Fixations and Saccades in Chronic mTBI

Note: Probability value (p) <.05

(Image generated by presentation authors.)

Neurocognitive Eye Tracking: Ongoing Research

Fusion-VR+ Study

- Examine eye movements for subacute mTBI, chronic mTBI, and control on simulated military patrol (target acquisition and engagement)
- Measure trajectory of recovery of eye movements and operational performance during mTBI recovery

Fusion Military Normative Study (NMCSD + Fort Liberty)

- Establish control norms, evaluate test-retest reliability
- Examine effects of post-traumatic stress disorder, insomnia, orthopedic injury
- Examine trajectory of recovery in subacute mTBI

Fusion-MRI Study

• Evaluate neurocognitive eye tracking as a biomarker for white matter injury after TBI

(Photo by Sarah I. Gimbel. Used with Permission)

(Photo by Jenna K. Trotta, TBICoE.)

Improving Health and Building Readiness. Anytime, Anywhere – Always

33

Summary and Discussion

- Multiple studies have shown that neurocognitive eye tracking can provide enhanced sensitivity to TBI-related cognitive and oculomotor impairments
- These TBI-related impairments are most notable when an individual is under a high level of cognitive load
- Oculomotor impairments present in similar ways on clinical tasks and during military/operational activities
- Additional work is ongoing to extend this work and expand neurocognitive eye-tracking capabilities within DoD clinical and operational environments

Key References

- 1. Schretlen, D. J., and A. M. Shapiro. "A Quantitative Review of the Effects of Traumatic Brain Injury on Cognitive Functioning." International Review of Psychiatry, vol. 15, no. 4, pp. 341–349, 2003.
- 2. Ettenhofer, M. L., R. A. Remigio-Baker, J. M. Bailie, W. R. Cole, and E. Gregory. "Best Practices for Progressive Return to Activity After Concussion: Lessons Learned From a Prospective Study of U.S. Military Service Members." *Neurotrauma Reports*, pp. 137–145, October 2020.
- 3. Ettenhofer, M. L., J. Hershaw, and D. M. Barry. "Multi-Modal Assessment of Visual Attention Using the Bethesda Eye & Attention Measure (BEAM)." *Journal of Clinical and Experimental Neuropsychology*, vol. 38, no. 1, pp. 96–110, 2016.
- 4. Ettenhofer, M. L., and D. M. Barry. "Saccadic Impairment Associated With Remote History of Mild Traumatic Brain Injury." *Journal of Neuropsychiatry and Clinical Neurosciences*, vol. 28, no. 3, pp. 223–231, 2016.
- 5. Ettenhofer, M. L., J. N. Hershaw, J. R. Engle, and L. D. Hungerford. "Saccadic Impairment in Chronic Traumatic Brain Injury: Examining the Influence of Cognitive Load and Injury Severity." *Brain Injury*, vol. 32, no. 14, pp. 1740–1748, 2018.
- 6. Heitger, M. H., R. D. Jones, A. D. Macleod, D. L. Snell, C. M. Frampton, and T. J. Anderson. "Impaired Eye Movements in Post-Concussion Syndrome Indicate Suboptimal Brain Function Beyond the Influence of Depression, Malingering or Intellectual Ability." *Brain*, vol. 132, no. 10, pp. 2850–2870, 2009.
- 7. Pierrot-Deseilligny, C. H., R. M. Müri, T. Nyffeler, and D. Milea. "The Role of The Human Dorsolateral Prefrontal Cortex in Ocular Motor Behavior." Annals of the New York Academy of Sciences, vol. 1039, no. 1, pp. 239–251, 2005.
- 8. Fan, J., B. D. McCandliss, J. Fossella, J. I. Flombaum, and M. I. Posner. "The Activation of Attentional Networks." *Neuroimage*, vol. 26, no. 2, pp. 471–479, 2005.
- 9. Ettenhofer, M. L., S. I. Gimbel, and E. Cordero. "Clinical Validation of an Optimized Multimodal Neurocognitive Assessment of Chronic Mild TBI." Annals of Clinical and Translational Neurology, vol. 7, no. 3, pp. 507–516, 2020.
- 10. Ettenhofer, M. L., L. Hungerford, and S. Agtarap. "Multi-Modal Neurocognitive Screening of Military Personnel With a History of Mild Traumatic Brain Injury Using the Bethesda Eye & Attention Measure (BEAM)." *Journal of Head Trauma Rehabilitation*, vol. 36, no. 6, pp. 447–455, 2021.
- 11. Barry, D. M., and M. L. Ettenhofer. "Assessment of Performance Validity Using Embedded Saccadic and Manual Indices on a Continuous Performance Test." Archives of Clinical Neuropsychology, vol. 31, no. 8, pp. 963–975, 2016.

Acknowledgments

- Naval Medical Center San Diego
 - Lars Hungerford, Ph.D.
 - Sarah Gimbel, Ph.D.
 - Angelica Aguirre, M.A.
 - Jenna Trotta, M.S.
 - Sean Molnar, M.A.
 - Evelyn Cordero, M.A.
 - Carlos Monasterio, B.S.
 - James Engall, Ph.D.
 - Stephanie Agtarap, Ph.D.
- Uniformed Services University
 - Jamie Hershaw, Ph.D.
 - MAJ David Barry, Ph.D.

- Naval Health Research Center
 - Pinata Sessoms, Ph.D.
 - Weimin Zheng, Ph.D.
 - Jacob Van Dehy, M.S.
 - Hedaya Rizeq, M.S.
 - Carlie Daquino, B.A.
- Institutional Support
 - DHA TBICoE
 - USUHS
- Grant Support— Congressionally Directed Medical Research Programs
 - W81XWH-13-1-0095, W81XWH-18-2-0069, W81XWH-20-2-0060

Questions/Comments?

Contact Information:

Mark L. Ettenhofer, Ph.D. mark.l.ettenhofer.ctr@health.mil

