Biostasis

PRESENTED BY: Dr. Tristan McClure-Begley

Program Manager, DARPA

MODERATED BY: Steve Redifer

2020-12-18

HDIAC is sponsored by the Defense Technical Information Center (DTIC). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Technical Information Center. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

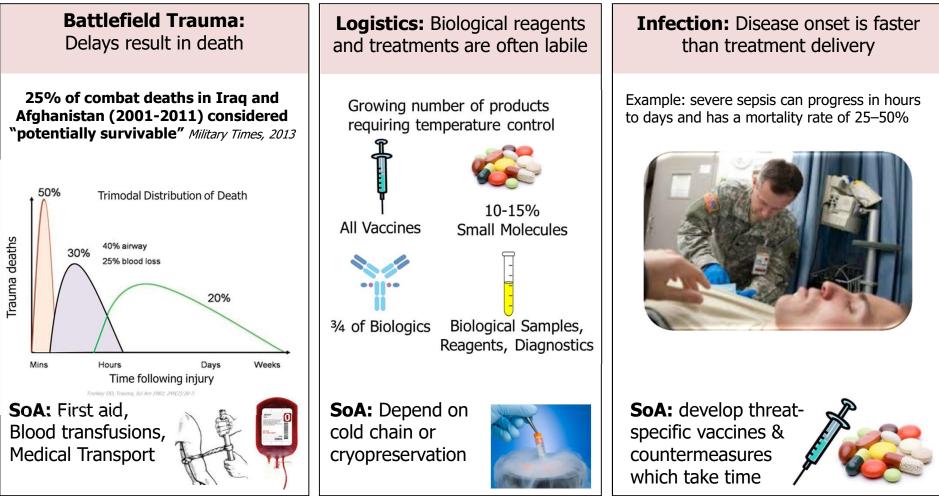
info@hdiac.org https://www.hdiac.org

Biostasis

Tristan McClure-Begley, Ph.D. Program Manager Biological Technologies Office Defense Advanced Research Projects Agency

DoD Problem: On the battlefield, time is never on our side

Distributed operations with minimal health infrastructure



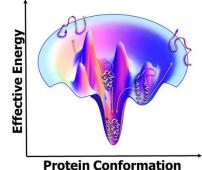
Why do we (DoD) care?

Current strategies to treat individual warfighters suffering from trauma or acute infection are slow, reactive, and inadequate

Biostasis Program goal: develop novel molecular interventions that will reversibly pause biological processes and protect the functional integrity of the biological system that has been paused.

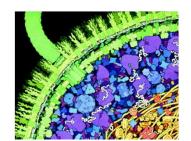
Vision: Develop a new class of interventions to effectively extend the window of time for treatment following injury or infection

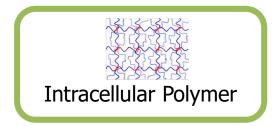
Goals:

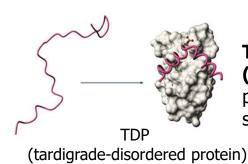

- Reversibly slow processes in live biological systems
- Scalable approach for preservation of simple cells to systems
- Demonstrate and deploy in austere conditions (no cold chain)

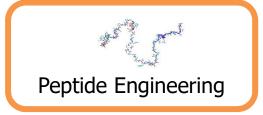
Approaches Pursued

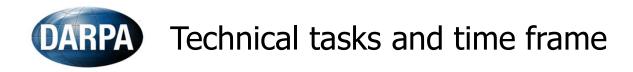
Concept

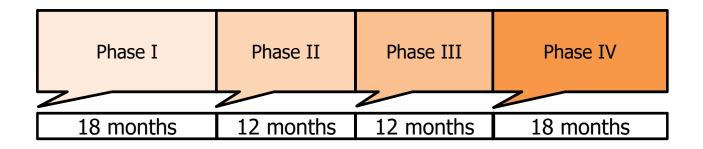

Solution?


Protein Chaperoning:

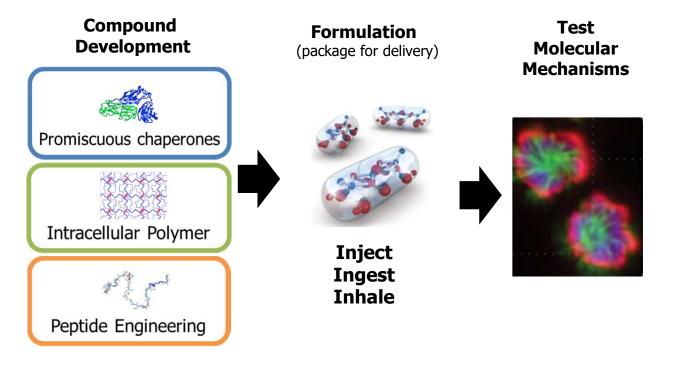

Protein function is constrained by reducing conformational flexibility


Intracellular Crowding: Protein function and interaction with water is constrained when the interior of the cell is overcrowded



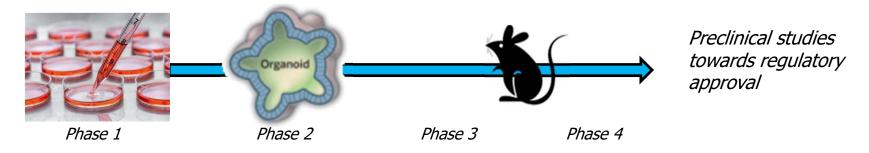

Tardigrade-disordered proteins

(TDPs) stabilize cell functions and protect against freezing/desiccation stress.


1. Design, Build and Test reversible Biostasis interentions 2. Determine Safety, Efficacy and Generalizability of Biostasis

Task 1: Design, Build, and Test Reversible Biostasis Interventions

Our eventual goal is to *develop interventions that pause and/or slow biological systems*



Task 2: Determine Safety, Efficacy, and Generalizability of Biostasis

Our eventual goal is to *test interventions from Task 1 in biological systems of increasing complexity and along the way determine the generalizability of interventions.*

Determine in vivo biostasis activity and establish safety

Determine generalizability: Intervention should produce stasis in any human relevant system

Table 1: Progression of Model Complexity and Potential DoD applications by phase

Phase	Model System	Primary Metrics (capability test)	Potential DoD application
Ι	Simple cell/in vitro	Stasis induction and viable cell	Biological reagents &
	system, human cells	recovery at 60%.	therapeutics without cold chain
II	Complex human cell	Stasis induction and viable cell	Blood product, cell-based
	systems, organoids or	recovery at 85%.	sensors/diagnostics
	tissue		
III	Human organoid or	Stasis induction and viable cell	Tissue preservation
	tissue	recovery at 98%.	
IV	Animal	Stasis induction and tolerance in	Trauma and acute infection
		animal model	

- "Prior to the end of each phase, performers will be required to demonstrate the ability of their approach(es) to initiate and maintain Biostasis in their model system of choice."
- "Ideally, this demonstration should be presented as a single, large-scale experiment that details the methods used to measure biological activity, the degree and duration of stasis induced, and the mechanisms by which stasis is produced and reversed."
- "Challenges to the system will be selected by the performers in consultation with DARPA, and should be consistent with a desired end-user application space. It is not required that performers set aside a specific period of time for a demonstration, rather, the demonstration should be a test of Biostasis capability by the end of the phase."

Biostasis

PRESENTED BY: Dr. Tristan McClure-Begley

Program Manager, DARPA

MODERATED BY: Steve Redifer

2020-12-18

HDIAC is sponsored by the Defense Technical Information Center (DTIC). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Technical Information Center. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

info@hdiac.org https://www.hdiac.org