DNA as a Molecular Engineering Platform for Defense Applications PRESENTED BY: #### Steven Armentrout, PhD Co-Founder & CEO, Parabon Nanolabs MODERATED BY: Steve Redifer 2020-12-01 Homeland Defense & Security Information Analysis Center # DNAas a Molecular Engineering Platform for Defense Applications HDIAC 1 Dec 2020 Steven Armentrout, PhD Co-Founder & CEO #### **DNA Basics** Double-stranded DNA (dsDNA) is comprised of two antiparallel DNA strands held together byhydrogen bonds between nucleobases, which is called *basepairing*. adenine (A) <-> thymine (T) cytosine (C) <-> guanine(G) Single bead pernucleotide representation #### **DNA Basics** Double-stranded DNA (dsDNA) is comprised of two antiparallel DNA strands held together byhydrogen bonds between nucleobases, which is called *basepairing*. adenine (A) <-> thymine (T) cytosine (C) <-> guanine(G) Segments of consecutive bases that base pair are called the *reverse complement* of one another. #### **DNA Basics** Single-stranded DNA (ssDNA) is not helical and can complement with itself along stretches that are complementary. ssDNA can be readily synthesized in lengths ranging from short oligonucleotides ("oligos") (<50 bases) to genescale (5000 bases). ### Duplex Hybridization (Video 1) #### oxDNA Simulation P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012) https://dna.physics.ox.ac.uk/index.php/Screenshots_and_movies#double-stranded_DNA #### Structural DNA Single-stranded synthetic DNA can be used as a nanoscale construction material and woven into molecular designs Notice how the blue, yellow and lavender strands participate in both the upper and lower helices. ### Structural DNA ### Origami Hybridization (Video 2) #### Example DNA Nanostructures With properly ordered DNA sequences, arbitrarily shaped nano-carriers can be produced en masse via self-assembly and functionalized with a rich assortment of subcomponents to create custom, even personalized, pharmaceuticals, vaccines and reagents. AFM images showing just a few of the types of nanostructures that can be produced with Essemblix. D-N-A "written" in streptavidin on a nano-carrier surface #### inSēquio Design Studio Parabon's **inSēquio™ Design Studio** software, the development of which has been partially funded by the DoD, provides a powerful suite of computer-aided design (CAD) capabilities that enable design of sophisticated DNA nanostructures. ### inSēquio3D (Videos 3-5) ### inSēquioVR ### inSēquioVR ### Cross-Tile Origami #### Circumscribing a Human Hair Avg diameter (d) of human hair (μ m) 75 Avg circumference (πd) of human hair (μ m) 235.6 Nanostructure width (nm) 100 Nanostructure width (μ m) 0.1 Number of nanostructures required to circumscribe an average human hair 2356 ### Cross-Tile Origami Rahman M, Neff D, and Norton M. "Rapid, high yield, directed addition of quantum dots onto surface bound linear DNA origami arrays." *Chemical Communications* 50.26 (2014): 3413-3416. ### Cross-Tile Origami 560 nm x 560 nm 550 nm x 550 nm ### Super-resolution Microscopy Graugnard, Elton, et al. "Nanometrology and super-resolution imaging with DNA." *MRS bulletin* 42.12 (2017): 951. #### **Artificial Antibodies** Single molecule nanosensor Objective: Develop a general purpose, single-molecule nanosensor that can capture and report molecular binding of a target species. **MD** simulation of pinceraction AFM images of CO-3970 sensor before and after introduction of target species (steptavidin). Closed state in Figure B indicates successful capture. #### **Artificial Antibodies** AFM images of CO-3970 sensor before and after introduction of target species (steptavidin). Closed state in Figure B indicates successful capture. ### Nanoscale Molding Sun, Wei, et al. "Casting inorganic structures with DNA molds." Science 346.6210 (2014). ### Superconducting 3D Structures Shani, Lior, et al. "DNA-assembled superconducting 3D nanoscale architectures." *Nature communications* 11.1 (2020): 1-7. #### **DNA Nanocarriers** Parabon has several federally funded projects to explore use of DNA nanocarriers. Two NIAID projects to develop vaccines against HIV. One anticipated NCI project to develop a novel treatment for prostate cancer. One DoD-funded project to develop cognitive boosting agents. ## DNA as a Molecular Engineering Platform for Defense Applications PRESENTED BY: #### Steven Armentrout, PhD Co-Founder & CEO, Parabon Nanolabs MODERATED BY: Steve Redifer 2020-12-01 Homeland Defense & Security Information Analysis Center