DNA as a Molecular Engineering Platform for Defense Applications

PRESENTED BY:

Steven Armentrout, PhD

Co-Founder & CEO, Parabon Nanolabs

MODERATED BY: Steve Redifer

2020-12-01

Homeland Defense & Security Information Analysis Center

DNAas a Molecular Engineering Platform for Defense Applications

HDIAC

1 Dec 2020

Steven Armentrout, PhD Co-Founder & CEO

DNA Basics

Double-stranded DNA (dsDNA) is comprised of two antiparallel DNA strands held together byhydrogen bonds between nucleobases, which is called *basepairing*.

adenine (A) <-> thymine (T)

cytosine (C) <-> guanine(G)

Single bead pernucleotide representation

DNA Basics

Double-stranded DNA (dsDNA) is comprised of two antiparallel DNA strands held together byhydrogen bonds between nucleobases, which is called *basepairing*.

adenine (A) <-> thymine (T)

cytosine (C) <-> guanine(G)

Segments of consecutive bases that base pair are called the *reverse complement* of one another.

DNA Basics

Single-stranded DNA (ssDNA) is not helical and can complement with itself along stretches that are complementary.

ssDNA can be readily synthesized in lengths ranging from short oligonucleotides ("oligos") (<50 bases) to genescale (5000 bases).

Duplex Hybridization (Video 1)

oxDNA Simulation

P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)

https://dna.physics.ox.ac.uk/index.php/Screenshots_and_movies#double-stranded_DNA

Structural DNA

Single-stranded synthetic DNA can be used as a nanoscale construction material and woven into molecular designs

Notice how the blue, yellow and lavender strands participate in both the upper and lower helices.

Structural DNA

Origami Hybridization (Video 2)

Example DNA Nanostructures

With properly ordered DNA sequences, arbitrarily shaped nano-carriers can be produced en masse via self-assembly and functionalized with a rich assortment of subcomponents to create custom, even personalized, pharmaceuticals, vaccines and reagents.

AFM images showing just a few of the types of nanostructures that can be produced with Essemblix.

D-N-A "written" in streptavidin on a nano-carrier surface

inSēquio Design Studio

Parabon's **inSēquio™ Design Studio** software, the development of which has been partially funded by the DoD, provides a powerful suite of computer-aided design (CAD) capabilities that enable design of sophisticated DNA nanostructures.

inSēquio3D (Videos 3-5)

inSēquioVR

inSēquioVR

Cross-Tile Origami

Circumscribing a Human Hair

Avg diameter (d) of human hair (μ m) 75 Avg circumference (πd) of human hair (μ m) 235.6 Nanostructure width (nm) 100 Nanostructure width (μ m) 0.1

Number of nanostructures required to circumscribe an average human hair

2356

Cross-Tile Origami

Rahman M, Neff D, and Norton M. "Rapid, high yield, directed addition of quantum dots onto surface bound linear DNA origami arrays." *Chemical Communications* 50.26 (2014): 3413-3416.

Cross-Tile Origami

560 nm x 560 nm

550 nm x 550 nm

Super-resolution Microscopy

Graugnard, Elton, et al. "Nanometrology and super-resolution imaging with DNA." *MRS bulletin* 42.12 (2017): 951.

Artificial Antibodies

Single molecule nanosensor

Objective: Develop a general purpose, single-molecule nanosensor that can capture and report molecular binding of a target species.

MD simulation of pinceraction

AFM images of CO-3970 sensor before and after introduction of target species (steptavidin). Closed state in Figure B indicates successful capture.

Artificial Antibodies

AFM images of CO-3970 sensor before and after introduction of target species (steptavidin). Closed state in Figure B indicates successful capture.

Nanoscale Molding

Sun, Wei, et al. "Casting inorganic structures with DNA molds." Science 346.6210 (2014).

Superconducting 3D Structures

Shani, Lior, et al. "DNA-assembled superconducting 3D nanoscale architectures." *Nature communications* 11.1 (2020): 1-7.

DNA Nanocarriers

Parabon has several federally funded projects to explore use of DNA nanocarriers.

Two NIAID projects to develop vaccines against HIV.

One anticipated NCI project to develop a novel treatment for prostate cancer.

One DoD-funded project to develop cognitive boosting agents.

DNA as a Molecular Engineering Platform for Defense Applications

PRESENTED BY:

Steven Armentrout, PhD

Co-Founder & CEO, Parabon Nanolabs

MODERATED BY: Steve Redifer

2020-12-01

Homeland Defense & Security Information Analysis Center