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OUTLINE
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• U.S. Army Combat Capabilities Development Command
(CCDC) Army Research Laboratory (ARL) conducts disruptive
foundational research in support of Army modernization.

• Advancing components for high-power transmission and
pulsed power enhances mission capability (mobility, survivability,
& lethality) of Army high-priority modernization programs
(Air & Missile Defense, Future Vertical Lift, & Next-
Generation Combat Vehicle) by expanding high-power range,
increasing power density, and maximizing efficiency of
switching components.

• By driving high-voltage SiC device design and fully
understanding and validating devices’ capabilities relevant to
Army needs, ARL can innovate new solutions for the future
Army.
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RESEARCH MOTIVATION

Versatile tactical power for survivability & lethality, 
multidomain dominance
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RESEARCH MOTIVATION

• SiC continues to be the most promising, near-term, wide band gap (WBG) semiconductor
replacements for traditional Si-based power solutions.

• SiC is also the most promising, near-term WBG material to push forward into the high-voltage regime
(>10 kV) — enabling new capabilities.

• ARL and research partners are focused on optimizing design at the chip level and propelling
packaging innovation for high-voltage, power-dense modules.
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Benefits of SiC Over Si

• Higher breakdown electric field (thinner epilayer, 
narrower termination)

• Lower RON and switching losses at very high-
current density (greater efficiency)

• Good thermal conductivity (simpler cooling system,
more thermal margin)

• High Young’s modulus (withstand thermal
transients of pulse stresses)

• Higher saturated drift velocity (supports high dI/dt
and dV/dt capabilities)
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SiC FOR HIGH VOLTAGE, HIGH CURRENT

High voltage combined with pulsed high current 
is our unique research focus.
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Device Design Challenges

• Material thickness/purity/uniformity

• Trade-offs to increasing high voltage & chip size

• Fabrication complexity

Device Characterization Challenges
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TECHNICAL CHALLENGES
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• Partner with industry and universities to drive innovation in single-die 
device design, fabrication, packaging, controls for pulsed power, and low-
duty cycle continuous power Army applications.

• Fully characterize and analyze device behavior at extreme electrical 
stresses to gain deeper understanding of semiconductor physics and 
design scalability.

• Directly compare different, novel device designs to determine advantages 
of each and how to further optimize epi thickness, material doping, chip 
layout, and processing.
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APPROACH
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▪ Previous programs (2012-2016) invested in epi fabrication & investigated designs for high-voltage
insulated-gate bipolar transistors (IGBTs), metal-oxide-semiconductor field-effect transistors
(MOSFETs), thyristors, & diodes.

▪ New program focus is to further develop IGBTs (>20 kV, 30 A) and thyristors (>15 kV, 50 A
continuous or 5 kA pulsed).

▪ Focus on 12-kV, 20-A MOSFETs with Prof. Woongje Sung.
▪ Leveraging state-of-the art capabilities of New York’s Power Electronics Manufacturing Consortium.

▪ Focus on 15-kV, 20-A MOSFETs & 20-kV, 40-A IGBTs.
▪ Leveraging previous work under the U.S. Department of Energy (DoE).
▪ Will utilize X-Fab (leveraging DoE’s Power America).
▪ Consortium with Ohio State and the Nuclear Reactor Laboratory.
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CURRENT ARL HIGH-VOLTAGE DEVICE 
PROGRAM PARTNERS

Cree-Wolfspeed

SUNY-Poly

GeneSiC
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ARL has custom, high-voltage, high-current test capabilities highly relevant to
Army-fielded conditions. Evaluation capabilities include:

• DC blocking voltage to 30 kV

• Pulsing >100 kA, widths ranging from 500 ns to 1 ms

• 10-kHz, step-down buck converter (10 kV to 2 kV)

Ability to test at very high-pulsed current density has led to many insights, which
steered significant improvements in device design and major changes to 
component packaging methods and materials used.
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ARL DEVICE CHARACTERIZATION CAPABILITIES

Device simulation:  static characteristics, 
dynamic switching, circuit behavior

Texas Tech partnership:  long-term, low-duty switching & analysis, thermal imaging, 
scanning electron microscope, focused ion beam, package simulation & analysis

Evaluation circuits
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EXPERIMENTAL FOCUS

• High-voltage transients
• High-current densities
• Large-chip areas
• Turn-on process
• Turn-off process

For high-power EM systems, need to understand device operation over:

Understanding behavior at faster switching conditions is relevant to:

15 kV, 1 cm2 and 6 kV, 0.5 cm2

super gate turn-off thyristors 
(SGTOs)

(1) Explore broader application space for high-voltage SiC diodes and thyristors.

(2) Investigate consequences or trade-offs to increasing high voltage and chip size.

(3) Optimizing device design for a wide range of switching conditions.
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POSSIBLE APPLICATION SPACE

Sanders. “Solid state switches for high-frequency operation 
as thyratron replacements,” www.appliedpulsepower.com, 
2013.

Pécastaing. “Very Fast Rise-Time Short-Pulse High-Voltage 
Generator,” IEEE Trans. Plasma Science, 2006.

Replacing Thyratron for Pulsed Driver Reducing Stages of Marx High-Voltage Generator



UNCLASSIFIED | Distribution Statement A: Approved for public release; distribution is unlimited.

• Embedded termination for simpler processing and greater blocking yield

• 140-µm blocking layer for 15 kV

• Ni ohmic annealed at elevated temperature for stable Vf at high-current densities

• 1450 C lifetime enhancement to reduce Vf and improve latch-up and holding current

• Optimized epi surface treatment process to maintain high-voltage blocking
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THYRISTOR AND PIN FOR PULSED HIGH 
CURRENT

P-doped 1.0 cm2,
15-kV SiC thyristor

N-doped 1.0 cm2,
15-kV SiC thyristor

N-drift 1.0 cm2,
15-kV SiC PiN diode
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• The 15 kV SiC n-thyristor utilizes an identical device structure to that used for the p-thyristor, except the polarity of the 
epilayer is reversed and the p+ injector layer at the anode was thinned.

• Fabrication process includes lifetime enhancement oxidation at 1450 C and epi surface treatment prior to gate and 
cathode epi growth.

• It was projected that carrier lifetimes of 15–20 µs in the n-epi would lead to lower Vf and greater lateral current 
spreading velocity.
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N-DOPED EPI DESIGN AND EXPECTATIONS

N-doped 1.0 cm2,
15 kV SiC thyristor
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METHODOLOGY

• Design circuit for high dI/dt (emphasis on t)
• Investigate gating techniques
• Investigate minimum switching period (charge, switching, recovery)
• Modify circuitry for higher V, burst rate
• Optimize gating controls and data acquisition
• Identify limits and align with applications

1 cm2 SGTO

PiN
diode

Rogowski
coil

Load
resistors

Fast-discharge 
high-voltage 

capacitorGeneral schematic of the capacitor discharge circuit.
The PiN diode was later removed to allow thyristor to

self-commutate.
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TURN-ON DELAY AND DI/DT

Contributing Factors: – base width of each transistor
– diffusion rates
– current density
– charge
– device geometry

Turn-on Delay Time

Spreading Velocity

WP: p-type base width
WN: n-type base width
Dn: electron diffusion rate
Dp: hole diffusion rate
J: cathode current density
q: charge
ΤHL: carrier lifetime
Da: ambipolar diffusion
coefficient

Eq. Reference: B.J. Baliga, Fundamentals of Power Semiconductor Devices, PWS Publishing, Boston, 1996.

General cross section of a 
thyristor and equivalent 

transistor circuit
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TURN-ON DELAY AND DI/DT

Example of saturation limitation at 
initial turn-on for 10-kV thyristor, 
manifested as elevated on-state 
voltage (power dissipation) and  

negligible increase in peak current: saturation

Importance of Understanding Performance Limitations at Initial Turn-on:

• Factors into controls and trigger timing in fast-response applications
• Defines the maximum operating frequency or pulse rate
• Enables comparison of different device designs under extreme conditions

(moderate speed combined with high power)
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MINIMUM TURN-ON DELAY

• Compares delays for different voltage-blocking ratings/epi designs
• Factors into controls and trigger-timing in fast-response applications
• Sets a limit on the operating frequency

Rising edge of applied gate current:
200 A/µs for Rg=10 ohm, 400 A/µs for

lower gate resistor values.

Relevance

RG

Cdrive

Trigger
FET

Simplified gate drive
configuration

Increasing rising edge to 400 A/µs enabled SGTOs to
turn on 25 ns earlier, starting to conduct pulse current

at 75 ns delay after initial applied gate current.
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N-TYPE, P-TYPE DIRECT COMPARISON

dI/dt (10-90%): 15.4 kA/µs
Peak power: 2.2 MW

Full width at half maximum (FWHM): 145 ns
Peak current: 1.1 kA
td gate-to-peak: 110 ns

dI/dt (10-90%): 10.3 kA/µs 
Peak power: 2.6 MW

FWHM: 160 ns
Peak current: 1.0 kA
td gate-to-peak: 160 ns

Peak PowerPeak Power
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N-TYPE, P-TYPE DIRECT COMPARISON

The greater lateral current-
spreading of the n-doped thyristor 
resulted in lower switching loss at 
narrow pulse, transmitting 30% more 
power to the load.

n-doped thyristor

p-doped thyristor
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• What is my point
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N-TYPE, P-TYPE DIRECT COMPARISON

I2t: 0.92 x103 A2s 
Peak power: 25 kW

FWHM: 680 µs 
Peak current: 1.3 kA 
On-resistance: 14 mΩ

FWHM: 680 µs
Peak current: 1.8 kA 
On-resistance: 11 mΩ

I2t: 1.7 x103 A2s
Peak power: 36 kW 
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• For rapid, low-energy (<1 J) discharge, the n-doped thyristor had lower
switching loss, peaking 50 ns earlier than the p-doped thyristor,
transmitting 30% more instantaneous power to the load.

• At higher-energy (400 J), higher-action switching, the p-doped thyristor
had lower conduction loss, enabling almost 40% higher current density.

• Both designs could use further optimization to increase lateral current
spread at turn-on and reduce overall on-resistance.
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KEY TAKEAWAYS
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• Refine n-thyristor doping and layout

• Improve high-current package contact for high dI/dt

• Explore further application space for the high-voltage thyristor
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PATH FORWARD
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RELEVANT PUBLICATIONS




