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Executive Summary

The Homeland Defense & Security Information Analysis Center (HDIAC) develops
State of the Art Reports on relevant, key topics for the Department of Defense
(DoD). One of the most significant topics within the Defense community is artificial
intelligence (Al). Al and some of its branches, primarily machine learning, were
prominent in the 2014 DoD Third Offset Strategy, which guided DoD’s approach
to combat operations and defensive posture [1]. Al research has also become
pervasive in academia and nearly all industrial sectors. Some of this research
produces outcomes being used by DoD and also highlights new risks and
challenges that could have implications for the DoD regarding how it conducts
operations in the future.

Al research in general, as well as its use in military applications, has its roots in
the 1950s. Alan Turing, a British mathematician and computer scientist, asked the
question, “Can machines think [2]?” This introduced a realistic tenor to the field of
Al, a subject once isolated to the realm of science fiction. Almost immediately after
the publication of Turing’s article, the Office of Naval Research (ONR) funded early
work into artificial neural networks, which form the basis of machine learning and
are required for deep learning [3]. Subsequently, Al efforts, both in defense and
civilian research, were led by the Advanced Research Projects Agency (ARPA,
which was later renamed Defense Advanced Research Projects Agency
[DARPA]), which continues to this day [4]. However, additional research is now
being conducted in the private sector, which poses its own set of challenges. Just
over half a century later, the concept of machine thought is rapidly approaching
reality. Recent advances in the field demonstrate new Al capabilities, such as
sight, speech, and even moral/ethical reasoning [5-7]. These advances all show a
common theme that machines are able to learn, adapting or amending their
predetermined programming based on new input. The ability for machines to learn
can be incorporated into weaponry and other applications used within DoD to
support DoD strategy. Al is redefining the way wars are fought and won, as has
been the case with many emerging technologies throughout history.

Since the 1970s, the bulk of DoD efforts regarding Al have focused on applied
research [4]. Accordingly, this report focuses on current and potential applications
of Al—not basic research. In many ways, this narrower focus makes it easier to
describe the proposed capabilities and current capacity of Al. Additionally, new
research is published almost daily, making it challenging to stay up-to-date on
essential algorithms, coding principles, chip processing speeds, and other
pertinent information needed to develop Al.

This report focuses on applications of Al that are relevant to DoD and other
governmental agencies that share similar goals, such as the U.S. Department of
Homeland Security (DHS) and the Intelligence Community. HDIAC collaborated
with subject matter experts to obtain interpretations on relevant applications of Al
to DoD and other agencies that could similarly incorporate Al into their operations.
Discussions narrowed on relevant applications that have been in use for the past
three years as well as advances that could become commercialized within the next
18-24 months. Given the vast amount of information, this report is not all-inclusive
and is only a survey of prominent developments.
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Although Al is often thought of as a part of computer science and typically viewed
from a cyber perspective, applications of Al are relevant to all eight HDIAC focus
areas. This report covers applications to Alternative Energy; Biometrics; Chemical,
Biological, Radiological, and Nuclear (CBRN) Defense; Critical Infrastructure
Protection (CIP); Cultural Studies; Homeland Defense and Security (HDS);
Medicine; and Weapons of Mass Destruction (WMD). In some cases, the
discussions group together areas that either overlap well or where information on
Al applications is thin, and it made more sense to integrate relevant areas in order
to provide a more robust perspective.
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1
Introduction
Gregory Nichols, Homeland Defense & Security Information Analysis Center

Background

One of the most significant topics in the defense community is Al. As illustrated by
the establishment of a U.S. national Al research strategy last year [1], high
expenditures on Al research within DoD [2], announcements by other nations
(such as China and Canada) to be leaders in Al [3,4], and the incorporation of Al
into weapons systems over the past five years, Al is an important topic of
discussion within the DoD community. Although typically considered within the
realms of computer science or cybersecurity, Al may also be considered in terms
of all eight HDIAC focus areas (see Figure 1), making this a meaningful topic of
discussion.

Figure 1. Examples of Al applications across HDIAC focus areas.

Overview

Intelligence refers to intellectual functioning [5]. It is the ability to learn or
understand or to deal with new or trying situations [6], and also encompasses a
capacity for logic, understanding, self-awareness, learning, emotional knowledge,
planning, creativity, and problem-solving [7,8]. Intelligence is exhibited by a variety
of animal species (most notably humans). The true test of intelligence is unclear,
but, most likely, intelligence involves the creation and use of persistent memories
(as opposed to computation that does not involve some aspect of learning),
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excluding purely autonomic sense-reaction responses. Based on these defining
characteristics, it is possible to create a machine capable of learning from
previously recorded experiences—thus recreating intelligence. These principles
are the foundation of the theory that machines could be programmed to learn,
thereby becoming intelligent.

Al is the intelligence exhibited by machines. Goals related to Al include the
development of intelligent agents that can recreate in machines those
characteristics of intelligence attributed to humans, such as reasoning, planning,
learning, natural language processing, emotional expression, and creativity [9,10].

The concept of Al involves principles from many disciplines, including philosophy,
mathematics, engineering, and computer science. The notion of Al traces its roots
to ancient Greece when the philosopher Aristotle first formalized the fundamentals
of modern logic. Logic is a philosophical and mathematic discipline that is
concerned with proper reasoning [11]. This process can be used to deconstruct
the world into small, understandable components that can be used to build more
complex analyses and evaluate connections within and between any system. Over
the past 200 years, these principles of logic have converged with the principles of
mathematics to more accurately reflect how humans process and comprehend the
natural world, much of which has been responsible for the creation of programming
and the foundation of computer science. Contributions from philosophers and
mathematicians (such as Alonzo Church, Gottlob Frege, Kurt Gddel, Bertrand
Russell, Ludwig Wittgenstein, and Alan Turing) led to the development of the
platform needed to develop Al, primarily computability.

Because the goal of Al is to mimic the complex output of the human brain, a
significant portion of Al research focuses on what it means to be human and how
the essence of humanity can be simulated by a machine. In addition to logic, work
in Al requires knowledge of the philosophy of mind (a branch of philosophy that
deals with the nature of thought and consciousness) [12] as well as psychology
(the study of the mind and behavior) [13]. Because of this, most research has
focused on recreating the machinery of the brain in order to emulate natural
pathways such as neurons that propagate electrical signals and facilitate thought
and action. Artificial neural networks are a key component of Al development,
particularly within the branch of Al known as machine learning. Machine learning
involves pattern recognition, which is taught to a machine by allowing it to process
thousands, if not millions, of images until it can recognize similarities and
differences between objects in order to determine what is a match and what it is
not. This process is innate to humans, illustrated by our ability to remember faces,
identify people, and simultaneously recognize similarities while understanding
differences. However, machines do not innately possess pattern recognition, so
they must be taught.

Machines also struggle with learning because they cannot “remember” in the same
manner as humans. Learning and understanding is derived from experience and
remembrance of the past while building toward a more complex task. Machines
suffer from what is known as catastrophic forgetting, which means they are
capable of learning one task at a time but are not completely able to put these
tasks together in a sequence on their own [14].
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The aforementioned challenges limit machines to performing specific tasks as
designed, an approach referred to as weak or narrow intelligence. All current
applications of Al are in this area. The ultimate goal is to develop strong or general
Al that more broadly reflects the complex range of tasks and emotions
demonstrated by humans, eventually achieving sentience, or self-awareness.

Interest in and funding related to Al has waxed and waned over the years. At its
inception in the 1950s, Al research began with expert systems designed
byexperienced professionals who programmed machines to do tasks based on
specific knowledge. However, the unprecedented spending associated with this
research halted in the 1970s due to the unpleasant revelations of the Lighthill
report [15] and did not pick up again until the 1980s [16]. The development of better
algorithms, chips with faster processing speeds, and increased private sector
funding have spurred Al development since approximately 2006 [17], and
researchers are now transiting to statistical-based programming. Funding slowed
down once more until the recent bump in spending again, primarily spurred by
private sector companies (such as Google, Apple, Baidu, and Microsoft), which
spent an estimated $26-$39 billion on Al in 2016 [18], as well as a shift in DoD
strategy [19].

History of Al in Defense, the Intelligence Community, and Homeland
Security

Modern Al interest evolved from the work of Alan Turing who assisted in the
development of a machine used to crack the German “Enigma” code during World
War 1l [20]. Following the war, Turing worked on designs for a forerunner to the
modern computer (the Automated Computing Engine) and published a paper in
1950 titled “Computing Machinery and Intelligence” in which he asked the
question: “Can machines think [21]?” The paper explained how Al is possible and
refuted many common arguments against the concept that existed at that time,
establishing the Turing Test (see Figure 2) as the process of evaluating the ability
of a machine to “exhibit intelligent behavior equal to or indistinguishable from a
human [21].” In 1956, John McCarthy organized the Dartmouth Summer Research
Project on Atftificial Intelligence in which he first coined the term “artificial
intelligence” to describe this machine-demonstrated reasoning [22].

Figure 2. A basic interpretation of the Turing Test, in which one player attempts to determine which of
the other players is human and which is a computer. Adapted from Copeland [23].
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Following this project, the pace of Al research quickened, interest grew, and
funding rapidly increased. After Turing’s success using computing to decipher the
“‘Enigma” code, British and American militaries were interested in the use of more
advanced computing methods for not only intelligence gathering but also for
developing weapons systems. In 1957, the Office of Naval Research funded the
development of one of the first artificial neural networks, the Mark 1 perceptron
(see Figure 3). Early efforts focused on software development, but the Mark 1 was
designed for image recognition [25]. It had an array of 400 photocells. Weights
were encoded in potentiometers, and weight updates during learning were
performed by electric motors [25].

Figure 3. Mark 1 perceptron [24]. (Released)

Support for Al began to wane in the 1960s due to a perceived lack of substantial
developments in relation to the cost of research. This decrease in support was
followed by cyclic periods of hype and then abandonment, which has since
continued, referred to as Al winters (lack of support) and Al springs/summers
(renewed support) [26]. For example, one of the primary research areas of Al had
been in machine translation. The National Research Council (NRC) expressed
concern regarding the lack of progress in the field of Al and, in 1964, formed
the Automatic Language Processing Advisory Committee (ALPAC) to investigate.
ALPAC concluded that “machine translation was more expensive, less accurate,
and slower than human translation [27].” Following the release of the report, the
NRC suspended support for machine translation, which continues to be a
challenging research problem.

From 1964 to 1966, at the same time ALPAC was established, a breakthrough in
natural language processing occurred at the Massachusetts Institute of
Technology (MIT) Artificial Intelligence Laboratory. A computer program named
ELIZA became the first program to arguably pass the Turing test by crudely
mimicking a psychotherapist [28,29]. However, in 1973, the United Kingdom-
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based Science Research Council commissioned Sir James Lighthill of Cambridge
University to evaluate the state of Al research throughout the U.K. His conclusions
were released in an infamous report, commonly referred to as the Lighthill Report,
in which he determined that “in no part of the field have discoveries made so far
produced the major impact that was then promised [30].” Upon its publication, Al
research halted throughout the U.K., except for efforts at three universities, and
the shockwaves rippled to the United States.

Throughout the 1960s and early 1970s, most Al research in the U.S. had been
funded by ARPA and performed at Carnegie Mellon University, Stanford
University, and MIT [16]—all of which continue to be leaders in Al. Fears of a
strengthening military-industrial complex fueled by American involvement in
Vietnam and a perception of uncontrolled and misguided defense research led
Congress to pass the Mansfield Amendment in 1969 [16]. The Mansfield
Amendment restricted DoD research to be “direct and apparent” to specific military
functions and operations, significantly affecting DARPA-supported Al research,
which was primarily basic research [16,31]. Later, the the Mansfield Amendment
of 1973 affected DARPA funding even more [32]. Shortly thereafter, the Lighthill
Report was released, prompting DARPA to create a panel of Al experts, the
American Study Group, which reached conclusions similar to the Lighthill Report.
Therefore, DARPA-funded Al research shifted to mission-direct research [16]. In
1974, the DARPA-funded Speech Understanding Research (SUR) Program at
Carnegie Mellon University was cancelled. The SUR Program was intended to
recognize voice commands given by a pilot; however, a demonstration revealed
that while the program recognized words in English, they had to be spoken in a
particular order to execute a command. DARPA determined the intended results
were not achievable, and the program was dismantled [16]. However, Al research
picked up once again a decade later in 1983 when DARPA created the Strategic
Computing Initiative (SCl)—a decade-long initiative that yielded significant work in
Al [16]. Both the work that stemmed from SCI and the shift from basic to applied
research set the stage for the computing revolution in the U.S. and created a
foundation for DoD’s Third Offset Strategy.

While the U.S. and U.K. governments struggled with Al research, breakthroughs
in Al research continued. The Soviet Union developed the P-700 Granit (SS-N-19
Shipwreck) in the 1970s, which is one of the first cruise missiles with an Al tracking
system [33]. And in 1977, MYCIN, an Al system, was used at Stanford University
to treat blood infections. It was one of the first Al systems to be put in use for a
specific function [34]. As the years progressed, previous work in Al at DARPA
began to pay off. The Dynamic Analysis and Replanning Tool (DART) was first
introduced in 1991 during Operation Desert Storm to optimize logistics. DART was
so successful that within four years, it offset the cost of the previous 30 years of all
DARPA Al research [35]. Furthermore, one of the key breakthroughs in Al occurred
in 1997, when IBM’s Deep Blue defeated chess grandmaster Gary Kasparov,
demonstrating that it is possible for machines to out-think people [36].

The beginning of the new millennium saw a resurgence in Al research, particularly
among the defense and intelligence communities. Throughout the 2000s, DARPA
funded several Al-oriented programs. From 2003 to 2008, the Cognitive Assistant
that Learns and Organizes project, known as CALO, established the foundation
for the personal assistant, Siri, used in all Apple devices [37]. In 2004, DARPA
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launched the DARPA Grand Challenge, a prize contest for autonomous vehicles,
paving the way for much of the current work in autonomous cars and drones [38].
Other notable DARPA programs since 2007 include:

Cognitive Technology Threat Warning System [39]
. Human Assisted Neural Devices [40]
Autonomous Real-time Ground Ubiquitous Surveillance-Imaging
System [41]
Urban Reasoning and Geospatial Exploitation Technology [42]
Adaptive Radar Countermeasures [43]
Behavioral Learning or Adaptive Electronic Warfare [44]
Mind’s Eye [45]
Probabilistic Programming for Advancing Machine Learning [46]
Explainable Artificial Intelligence [47]

Al is also being integrated into existing DARPA programs. In 2016, DARPA
launched the Sea Hunter, which had been developed through its Anti-submarine
Warfare Continuous Trail Unmanned Vessel program. The Sea Hunter is the first
unmanned ship that can perform most naval warship functions and uses Al to
operate with a minimal crew. Sea trials are underway, and it is expected to join the
fleet in 2018 [48].

Beyond DARPA, other military agencies have created robust Al-centered
programs. In 2010, the Air Force Research Laboratory (AFRL) created
Synchronized Net-Enabled Multi-INT Exploitation, a project aimed at developing
“advanced intelligence-collection and rapid-response capability” to assist U.S.
forces with attacking the enemy at its weakest points [49]. The project emphasized
machine-to-machine intelligence communications and cooperation and utilized Al
and other techniques to more effectively handle the massive amounts of data
collected both on the battlefield and through intelligence. In 2016, AFRL ran
simulations between a drone and an experienced fighter pilot, and the pilot was
defeated in every scenario. The drone employed software called ALPHA, which
uses fuzzy logic in its Al algorithms to mimic a human’s decision cycle [50]. The
Space and Naval Warfare Systems Center Intelligent Technologies for Decision
Making program was initiated to explore uses of Al for ship’s navigation, tactical
analysis, sensors, and weapons [51].

The use of Al in intelligence gathering is another area of robust research. While
related to and often overlapping with military operations, most of this work has
been coordinated through the Intelligence Advanced Research Projects Activity
(IARPA). Similar to DARPA, IARPA invests in high-risk/high-reward research but
in regards to intelligence activities. Notable IARPA Al research programs from
2010 to the present include:

. Integrated Cognitive-Neuroscience Architectures for
Understanding Sensemaking [52]

. Knowledge Representation in Neural Systems [53]

. Strengthening Human Adaptive Reasoning and Problem-Solving
[54]

. Machine Intelligence from Cortical Networks [55]
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Homeland security is another area in which Al research is taking place. In 2008, a
joint project between DHS and AFRL was launched. The Distributed Environment
for Critical Infrastructure Decision-making Exercises uses Al to simulate players in
disaster scenarios [56]. In 2012, U.S. Customs and Border Protection piloted a
two-month study at the border crossing in Nogales, Arizona, using the Automated
Virtual Agent for Truth Assessments in Real-Time (AVATAR), which is a virtual
agent that scans an individual’s identification then uses a combination of a
questionnaire and sensors to create a risk assessment. The platform uses
hundreds of different psychophysiological and behavioral cues to determine a
person’s credibility. Anyone who is flagged in this initial screening is directed to
undergo a secondary screening with a human agent [57]. AVATAR is also being
tested by the Canadian Border Services Agency [58], and is expected to play a
key part in developing border crossings of the future.

Al played a central role in the DoD’s Third Offset Strategy, which was unveiled in
2014 [59]. An offset strategy is long-term, competitive strategy aimed on
generating and sustaining a strategic advantage between defense establishments
[60]. The First Offset was developed in the 1950s as a response to Cold War
tensions with the Soviet Union and focused on nuclear armament and deterrence.
The Second Offset was developed in the 1970s and 1980s and focused on
precision-guided weapons systems. The Third Offset focused on developing
technological advancements in machine learning and autonomy and included five
components:

Learning Systems

Human-machine Collaboration

Human-machine Combat Teaming

Assisted Human Operations

Network-enabled, Cyber-hardened Weapons [61]

arowoN=

The Third Offset Strategy was rolled out to counter similar technological advances
in weapons systems and techniques from other nations. In December 2015, during
a speech hosted by the Center for a New American Security, Deputy Secretary of
Defense Bob Work commented on the Third Offset, stating, “Now, we believe,
strongly, that humans should be the only ones to decide when to use lethal force.
But when you're under attack, especially at machine speeds, we want to have a
machine that can protect us [62].” Secretary Work remarked in October 2016 at
the Center for Strategic and International Studies that “the pacing competitors—
not adversaries—are Russia and China, because they’re developing advanced
capabilities that potentially worry us [63].” Secretary Work has also stated that
“over time we’ll go to exercises where all five of the pieces are operating together
[61].”

As the prospect of increased autonomy and use of Al in weapons systems has
become more likely, the DoD realized the importance of establishing procedures
for dealing with these types of weapons. In 2012, DoD Directive 3000.09
(Autonomy in Weapons Systems) was issued. In general, the directive guides the
development of autonomous and semi-autonomous systems. In particular, it
expresses the intent to ensure that a human being always has the final
authorization regarding the execution of commands that would fire at a target [64].
The directive also prompted a review of autonomous systems within the DoD by
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the Defense Science Board in 2012 [65], and later the Summer Study on
Autonomy, which concluded that “while difficult to quantify,...autonomy—fueled by
advances in artificial intelligence—has attained a ‘tipping point’ in value [66].” The
announcement of the Third Offset Strategy, recommendations from the DoD and
other organizations, and the rapid rise of Al research in industry prompted action
for a unified national Al strategy. In 2016, the Obama administration established
the Subcommittee on Machine Learning and Al and released the National Artificial
Intelligence Research and Development Strategic Plan [1]. It is rather difficult to
pinpoint all of the areas within the DoD in which Al research takes place, but
DARPA, the U.S. Army Research Laboratory, ONR, and AFRL are certainly
leading the effort, and Deputy Secretary Work has stated that the DoD is expected
to spend $12—15 billion on Al research in the fiscal year 2017 [19].

Methodology and Structure of the Report

It is assumed that the reader will have a basic understanding of Al. Since most
DoD Al research is applied research, this report focuses much more on
applications of Al and not fundamentals of programming, mathematics, or
computer science needed for Al. The intent is to illustrate what is currently possible
across defense, homeland security, and intelligence applications and not to focus
on nuanced developments in the field itself. Developments over the past three
years and what is possible within the next 18 to 24 months have been the most
scrutinized aspects of Al research for this report. HDIAC reached out to subject
matter experts for their opinions and knowledge of Al as it applies to HDIAC’s eight
focus areas. Because this report focuses on applications, it is divided into sections
based on HDIAC focus areas.
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2

Use of Artificial Intelligence in Enabling Renewable Energy

Sue Ellen Haupt, National Center for Atmospheric Research
David John Gagne, National Center for Atmospheric Research

Introduction

Growth of Renewable Energy

The growth in deployment of renewable energy has been accelerating over the
past decade. By 2016, new installations of renewables worldwide were 161
gigawatts (GW) [1] for a total global capacity of 2,006 GW [2]. U.S. installed
capacity of wind energy at the end of 2016 was 82 GW, which included 8.2 GW of
new wind capacity, representing 41 percent of all new capacity in 2015 [3]. U.S.
solar capacity reached 44.7 GW, with an average annual growth rate of 68 percent
over the past decade [4], and, in 2016, utility-scale solar comprised 72 percent of
those capacity installations [4]. Investment in new renewable capacity worldwide
in 2016 was approximately double that in fossil fuels capacity for the fifth
consecutive year [1]. However, much of the worldwide growth in renewables has
been in Asia, with China becoming the world leader in the expansion of renewable
energy. It is estimated that by 2021, China will have more than one-third of the
global capacity of solar photovoltaic (PV) and onshore wind capacity [5]. India is
also showing more interest in installation of renewables and its solar PV capacity
is expected to grow by a factor of eight [5]. Aid organizations are working with
developing countries to stimulate their deployment of renewables as well.

This growth in renewables has been spurred by cost reductions, the drive to reduce
emissions of CO2 and other pollutants, and the aim of countries to achieve energy
independence. In 2016, CO, emissions from fossil fuels stabilized globally for the
third consecutive year despite global economic growth of 3 percent and increased
energy demand [1]. Policies in many countries have evolved to become more
favorable to renewables, which has helped enhance deployment [5].

Growth of Forecasting for Renewables and Necessity of Using Al

Because renewable energy uses natural resources (e.g., wind, solar, hydro) as its
fuel, that fuel supply is inherently variable. Utilities and independent systems
operators (ISOs) deal with that variability by incorporating forecasts [6]. These
forecasts are as critical to planning their operations as forecasts of hourly energy
load and the knowledge of coal, oil, gas, and nuclear unit availability. Lew et al. [7]
discuss the challenge of solar power integration, showing that the variability of
power output was greater with high penetrations of solar than with high
penetrations of wind. The response speed (ramp rate and start time), response
duration, frequency of use (continuously or only during rare events), direction of
use (up or down), and type of control characterize a utility company’s operating
reserves [8]. And these operating reserves can be managed with accurate solar
forecasts. Curtright and Apt [9] have shown that the cost of energy can be
strategically minimized with knowledge of the short- and long-term variations.
Some countries manage very high peaks in energy production from renewables,
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including energy peaks of 140 percent for Denmark and 86.3 percent for Germany
in 2016 [1] by maintaining high-quality forecasts and efficient operating
procedures. In the U.S., Xcel Energy (the American utility with the highest
percentage of wind capacity) calculates that accurate forecasts of its wind power
saves its customers roughly $10 million per year and also substantially reduces
emissions of CO2 and other pollutants [10]. These forecast systems leverage both
physical models and those based on Al. Al forecast systems based on machine
learning models that utilize a blend of weather observations and numerical weather
prediction (NWP) model output have consistently produced the most accurate
power forecasts and have been widely adopted by electric utilities and power
forecasting companies [11-13].

Similarly, military energy needs must be balanced, both for stationary microgrids
and for supplying energy to mobile troops. Just as the users must be aware of the
fluctuations in load, they must also be aware of fluctuations of the renewable
resources on various scales. This section of the SOAR will focus on the traditional
utility and ISO use and then draw parallels for applications to the DoD.

Military Applications of Renewables

As the nation’s largest energy user, DoD has a goal of managing its energy
resources judiciously. A 2014 DoD Directive [14] clarifies policies to manage
energy so as to enhance military capacity, improve energy security, and mitigate
costs. To this end, the DoD seeks to improve energy performance of its systems,
diversify energy supplies to include renewable energy, and include energy
analyses in its planning [14]. The DoD signed a Memorandum of Understanding
(MOU) with the U.S. Department of Energy to establish energy boards and
councils [15]. The 2010 MOU states:

Energy efficiency can serve as a force multiplier, increasing the range and
endurance of forces in the field while reducing the number of combat forces
diverted to protect energy supply lines, as well as reducing long-term
energy costs. DoD is also increasing its use of renewable energy supplies
and reducing energy demand to improve energy security and operational
effectiveness, reduce greenhouse gas (GHG) emissions in support of U.S.
climate change initiatives, and protect the DoD from energy price
fluctuations. Solving military challenges through innovation has the
potential to yield spin-off technologies that benefit the civilian community
as well [15].

In its 2016 Operational Energy Strategy [16], the DoD listed a specific goal to
develop energy supplies to reduce risk. As part of meeting that goal, DoD is
pursuing renewable energy opportunities, including harvesting energy from the
environment, particularly solar energy. To that end, the Army Research Laboratory
has assessed the integration of meteorological forecasting into the use of solar
power, including exploring solar power in microgrids [17,18].

By incorporating more renewable energy resources into its infrastructure, DoD can
increase its resilience to accidental and adversarial disruptions of traditional
electricity sources and reduce both the financial and personnel costs of
maintaining a fossil fuel supply chain [19]. Military bases in both the U.S. and those
overseas are dependent on a mixture of electricity supplied by outside sources
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and diesel generators in order to maintain continuous operations, and the
transmission lines and power plants outside military bases are vulnerable to
disruption. Additionally, diesel generators require constant resupply of fuel by
convoys, and in Iraq and Afghanistan, these convoys were frequently attacked,
resulting in hundreds of casualties [20]. On-base renewable energy sources are
better protected from attack and can offer more resilience, even when other parts
of the grid are disrupted.

Wind and solar energy resources produce power amounts that fluctuate based on
weather conditions, so successful integration of these sources into a power grid
requires accurate forecasts of electricity supply and demand. Although improving
battery storage technology has been a major focus in making renewable energy
viable for military applications [21], having storage available does not remove the
need for forecasts. While storage can help reduce the impacts of sudden supply
fluctuations, grid operators still need renewable energy power forecasts to allocate
power resources efficiently.

The remainder of this section discusses how Al methods are currently
implemented in providing those forecasts at different forecast time horizons for
civilian electric grids and how these methods can be adapted for military
operations. After discussion of the current state-of-the-art systems, promising
future directions are highlighted.

Forecasting Renewable Energy and Al

Overview

Forecasting renewable energy has been widely documented in various books
[22,23] and journal papers. Many of the techniques employed include Al as
described here and must be designed for the time scale of the fluctuation in the
resource. Fluctuations of the renewable resource are separated into very short
range (hours ahead), medium range (day ahead to week ahead), and longer range
(weeks to seasons and decades).

At the short range of hours ahead, the issue is balancing the load in the short
range, typically performed by the ISO grid operators. Because the load fluctuates,
as do the renewable resources, operators rely on having real-time short-range
forecasts for situational awareness (often called nowcasts) of the renewable
resources, in this case of wind and solar power. In grid operating rooms, operators
have displays of the conventional units currently operating as well as displays of
real-time forecasts of the expected renewable resources. Grid operators function
on time scales of five- to 15-minute forecasts and expect information at that
resolution for the next 3 to 6 hours.

The medium-range forecasts focus on the day ahead for unit allocations and
energy trading. Every morning, utilities bid expected power production for each
unit according to each unit’'s marginal price, which largely depends on fuel price
and operating parameters. For wind and solar power, the fuel is free, meaning that
the marginal prices are quite inexpensive and those units are typically allocated at
their maximum expected amounts. Thus, an accurate day-ahead forecast is
required to know the amount of wind and solar available. In addition, trading
between utilities is based on optimizing the marginal prices and utilizing those
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same forecasts. Hourly forecasts are required for the following day (often around
6 a.m. of the current day, implying a forecast for a lead time of 18 to 42 hours) so
unit allocations can be applied for hourly timeframes. Because utilities operate
primarily during normal business hours, a three-day forecast is needed for
weekend periods. And when holidays lengthen the weekend, the medium-range
forecast becomes four or five days.

Longer-term forecasts are needed for longer-term fuel optimization and
maintaining equipment, including transmission and distribution lines. In addition,
weather information helps energy companies prepare for extreme events (e.g.,
heat waves, cold snaps, icing, and very extreme weather such as hurricanes). The
longest-range forecasts (decades) are needed for resource assessment to plan
the best locations for renewable power plants. Not only do renewable developers
need to know the mean expected output of a potential plant, but they also need to
know likely fluctuations on scales ranging from the very short through interannual
and climatic scales. Thus, forecasting for these uses requires long-term
observations and Al capabilities to better predict expected renewable output.

Use of Al on the Very Short Range (Hours)

The shortest ranges (0—3 or 6 hours) is where Al outshines most other techniques
for forecasting renewable energy production. As such, Al, along with other
statistical learning methods, has been the mainstay of this prediction range. The
most popular method used is the artificial neural network [24-37]. Pedro and
Coimbra [25] showed that for one- to two-hour solar power predictions, an artificial
neural network model for a time series outperformed persistence, AutoRegressive
Integrated Moving Average (ARIMA), and k-Nearest Neighbors models.

Reikard, et al. [38] found that ARIMA models with dynamic coefficients are good
at this for short range but blending NWP models with dynamic coefficients is even
better. Lopez, et al. [39] accomplished a sensitivity study of the most relevant
predictors for estimating Direct Normal Irradiance with a Bayesian Atrtificial Neural
Network (ANN) method and chose to use the clearness index and the relative air
mass. The large number of tunable parameters requires a large quantity of training
data to prevent overfitting or loss of skill.

Some studies have found value in applying clustering techniques in advance of
training Al algorithms as discussed below. The philosophy behind this approach is
that weather occurs in regimes, and separating the data into specific regimes may
provide clusters of training data that behave similarly. Thus, one might expect that
the regime-dependent Al models produce better predictions than possible without
the clustering [40]. Hinkelman [41] showed that solar irradiance variability differs
among satellite data-derived cloud types, which suggests that this approach is
appropriate for irradiance forecasting.

A review of various methodologies for both supervised and unsupervised cloud
classification is provided by Tapakis and Charalambides [42]. The supervised
techniques classify regimes based on available training datasets and arithmetic
complexity of the technique, while the unsupervised techniques classify based on
the pixels of an image. McCandless, et al. [43] and Morf [44] demonstrated a one-
step stochastic prediction process for cloud cover or clearness index. K-means
clustering was used by Zagouras et al. [45] to identify regimes based on step-
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changes of the average daily clear sky index in the San Diego, California region.
Mellit et al. [46] trained separate models for three simple classifications of daily
total solar irradiance into clear, partly cloudy, and cloudy regimes and found
improvement over a single all-sky model, particularly for the cloudy days.
McCandless et al. used a k-means clustering algorithm to identify regimes before
applying an ANN [47]. That work used data regarding surface weather and
irradiance observations in addition to direct observation of irradiance values.

At times, it is necessary to have a very accurate, very short-range forecast for the
first 15 to 30 minutes. In this case, instruments at the site provide situational
awareness and the ability to forecast based on observations in the immediate
vicinity. One instrument that has been quite useful for these scales is the sky
imager, which consists of a camera that either looks upward or, in some cases, is
pointed at a mirror that looks upward. These instruments provide a real-time view
of the sky with its passing clouds. Using successive frames as input to cloud-based
advection techniques has proven to be a successful way to optimize prediction in
the first 15 to 30 minutes [37,48-51]. Some groups have deployed multiple imagers
in the same vicinity to expand the range of view, as well as to allow discernment
of the cloud base and height data, allowing motion vectors to vary with height
50,52]. These methods tune the motion vector algorithms with Al methods, such
as support vector machines [52].

Satellites afford remote sensing data that also provide situational awareness and
the capability to process successive frames to predict cloud motion [53-55]. Some
researchers have combined Al methods with satellite-based cloud-vector motion
methods. Marquez et al. [32] showed a five percent and 25 percent reduction in
Root-Mean-Squared Error (RMSE) compared to that of persistence by integrating
processed satellite images as input into ANNs to predict global horizontal
irradiance (GHI) from 30 minutes to 120 minutes. McCandless et al. [56] integrated
satellite-based cloud classification information into regime-dependent neural
networks.

Figure 1 demonstrates the improvement of the regime-dependent techniques over
a “smart” persistence forecast (persistence in cloud cover, allowing for changes in
the solar angle) beyond 15 minutes. Beyond the 15-minute lead-time, most of the
regime-dependent ANN-trained methods show between 10 percent and 28
percent improvement over the clearness index persistence method. Using the
cloud classification directly from the satellite classification does not improve
performance on average. The regimes using the satellite information but classified
via k-means clustering showed 21.0 percent, 26.4 percent, and 27.4 percent
improvement over the clearness index persistence at the one-hour, two-hour, and
three-hour forecast lead times, respectively. This method is the best overall
solution. In general, this work indicates that cloud regime classification that
includes satellite information makes a considerable positive impact on the overall
performance of the models [57].
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Figure 1. Percent improvement of Regime-Dependent ANNs over Smart Persistence near Sacramento,
CA. ANN-AII (red) trains an ANN on all data without separation into regimes, RD-ANN-GCT (purple) uses
regimes derived from the GOES satellite data, RD-ANN-KtCC used cloud cover regimes derived via k-
means clustering, and RD-ANN-GKtCC (blue) uses cloud cover regimes that include satellite-

based information [57]. ©American Meteorological Society. (Used with permission)

Finally, having nearby observations of related weather conditions can be leveraged
to produce forecasts at the site of the renewable energy resource. When such
observations are available upstream of renewable energy sites, it is possible to
build “expert systems” that make use of this information together with average
speed and direction of system movement. Kosovic et al. [10] describe application
of one such system to predict wind energy.

Use of Al for Medium Range Forecasting

The primary forecasting tool for the medium range is NWP, which is based on the
Navier-Stokes equations of fluid motion combined with the forcing physics that
describe radiative forcing, land-surface processes, cloud-physics processes,
boundary-layer turbulence, and more. Forecasters have found they can improve
the accuracy of the NWP forecasts by calibrating and smartly blending via Al and
statistical learning methods [58-62]. Recently, some NWP models have been
tailored specifically to forecast renewable energy and its impacts, including the
Weather Research and Forecasting (WRF) model [63-65].

The most basic calibrating method is Model Output Statistics (MOS), first
demonstrated by Glahn and Lawry [66], which uses multilinear statistical
regression to calibrate the forecasts. Although this method requires a sufficiently
long time series to train (one to two years of data), it is in use in forecasting centers
throughout the world for a variety of forecast variables. Most of the forecast
equations are regionalized to increase the sample size [67].

Al methods have been utilized for day- to week-ahead lead times to generate bias-
corrected forecasts of renewable energy resources, such as wind speed and solar
irradiance, and estimates of the power produced from those resources. Al models
applied within this time frame generally use a mixture of atmospheric variables
from one or more NWP models as input, along with indicators of time of day,
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season, and terrain information. Each NWP model exhibits different systematic
biases, so the optimal deterministic forecast is found by first bias correcting the
forecast from each individual NWP model and then blending the bias corrected
forecasts. Every major type of machine learning model has been evaluated for use
in wind and solar power forecasting at short- and moderate-range time frames.

An example of a blending system used by several forecasting companies is the
National Center for Atmospheric Research’s (NCAR) Dynamic Integrated foreCast
system [68], DICast®, which produces these optimal blended forecasts for both
wind [58,69] and solar [61,70] resources. DICast blends output from multiple NWP
models using a two-step process. First, each model is calibrated using a dynamic
version of MOS. Second, the models are blended via optimizing the weights using
a dynamic weighting algorithm. DICast is typically applied separately at each site
of interest and for each forecast lead time. Weights are updated frequently. An
advantage of DICast is that it can optimize forecasts with less data than many
other Al algorithms, providing forecasts using as little as 30 days of historical data
and optimized at around 90 days of data. DICast has been shown to decrease the
error beyond the best model by 10 to 15 percent [58,71]. Figure 2 shows the
performance of DICast as the SunCast (represented by the yellow line) forecast
for day-ahead forecasts. The mean absolute error of the SunCast system is
consistently better than that of any of the component models.

Figure 2. Mean Absolute Error in W m-2 for all Day-Ahead forecasts from DICast® components and the
DICast blended Sun4Cast® system near Sacramento, California for all sky conditions. The blended
system has substantially lower error than any component model [70]. ©American Meteorological
Society. (Used with permission)
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While primary operating bases are more likely to have the observational
infrastructure to allow for the training of Al systems dedicated to those bases,
forward operating bases and warfighters operating portable solar systems will not
be able to utilize a solar forecasting model trained to their location. Instead, they
could use gridded renewable energy forecasting models that are trained on all
available data in the area and are applied at the location of interest. Gagne et al.
[72] evaluated different gridded solar irradiance forecasting methods in Oklahoma
and found that gradient-boosted regression trained over multiple sites and applied
directly at the site of interest resulted in the lowest mean absolute error. Forecast
errors increased for all methods when conditions were partly cloudy and at sites
with higher amounts of cloudiness. The largest errors occurred in the spring, and
the smallest errors occurred in the winter. Figure 3 demonstrates performance of
that model.

Figure 3. Mean absolute error of clearness index forecasts in Oklahoma grouped by the observed
clearness index value for three types of machine learning models. The histogram in blue displays the
observed relative frequency of clearness index values [72].
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McGovern et al. [73] conducted an international forecasting contest to predict total
daily solar radiation at sites across Oklahoma using an ensemble of global
numerical weather prediction model output. Many machine learning methods were
tested on this dataset, and the top performers all used gradient-boosting
regression in their systems. The key differences among the methods resulted from
how the model forecasts were interpolated from the model grid points to the
forecast sites. Combining multiple interpolation approaches improved the
predictions because the different approaches brought different kinds of information
to the sites.

Some Issues for Distributed Solar Forecasting

One confounding issue for forecasting solar power is that much of the deployment
is behind the meter, making it difficult to separate production from this Distributed
Photovoltaic (DPV) resource from reductions in load at that site. There are several
approaches to addressing this problem, primarily a bottom-up or a top-down
approach [12]. The bottom-up approach requires detailed information about the
installation, including location, tilt, azimuth, and maximum capacity. With this type
of information, one can calculate the expected power output at each site and
simply add up the sites [74]. Unfortunately, that information is seldom available
and forecasters must take a top-down approach. Using this method, the Al
irradiance forecast is trained for a site with available observations and then
distributed geographically according to the distribution of the DPV [75-77].
Although this approach appears ad hoc, it has been found to produce forecasts
within 3 to 5 percent of the actual at those sites where observations allow validation
[77].

Al in the Longer Ranges

In the timeframe beyond one week, methods must be matched to the use. For the
second week of the forecast, providers use methods quite similar to those
discussed for the day-ahead timeframe—they work from NWP and correct with Al
or statistical learning approaches. The subseasonal (>two weeks) to seasonal (one
to three months) range begins to depend more on identifying the primary patterns
in the atmosphere, often called teleconnection patterns, and predicting from
observations of “typical” behavior during the prevailing events. Patterns such as
the North American Oscillation and Pacific North American Oscillation denote
“‘normal modes” of the atmosphere that can persist for a few weeks to a few
months. At longer time scales, the lower temporal modes such as the El
Nino/Southern Oscillation (ENSO) and Madden Julian Oscillation come into play.
The problem transitions from one of an initial value problem solved by NWP
models to more of a boundary value problem that must be solved via coupled
systems that include more detailed interaction of the atmosphere with the oceans,
land surface, cryosphere, and biosphere. National centers such as the U.S.
National Oceanographic and Atmospheric Administration, Environment Canada,
and European Center for Medium Range Forecasting routinely run seasonal
forecasts using such coupled models. Forecasters often then use Al and statistical
learning methods to improve on those forecasts.

Seasonal forecasts of renewable energy resources may be helpful to the military
for long-term mission planning and base management as well as the hedging of
financial risks through advanced purchasing of fuel. Grimit et al. [78] conducted
experiments evaluating the accuracy of different learning methods for forecasting
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whether the monthly wind and solar power generated at a geographically diverse
set of sites across the United States would produce above or below normal power
amounts. They compiled a large number of climate and teleconnection indices as
input into a random forest model and compared the random forest with operational
forecasts from the U.S. Climate Prediction Center. At most sites, the random forest
predictions produced major improvements in accuracy over the simple benchmark
and a random coin flip for both wind and solar anomalies. Utilizing a larger set of
climate indices and predictions from seasonal climate models led to higher
accuracy.

In the timeframes beyond a week, hydrological sources of renewable energy also
vary substantially and forecasts help the energy industry plan their use. Those
resources are typically modeled by coupling hydrological models with atmospheric
models, such as the WRF-Hydro model (version of the WRF model adapted to
interact with river segments) that was recently deployed as the U.S. National Water
Model [79]. The hydrological community uses Al for reservoir management, model
parameter estimation, snowfall calibration [80], and beyond.

For very long-range forecasts at the seasonal and longer timescales, the climate
models are required, including all interactions discussed above, but additionally
estimating changes in the atmospheric composition. To make estimates of
interannual variability and projected changes of renewable resources, Al methods
can facilitate a consistent comparison with current climate. For instance, in a
collaborative project with the National Renewable Energy Laboratory, NCAR
computed the interannual variability of the renewable resources as well as the
projected change [81]. That study estimated the current climate variability using a
climate reanalysis, which blends historical weather observations using an NWP
model to intelligently interpolate the observations and ensure that the final analysis
is consistent with model physics.

The team then used Self Organizing Maps (SOMs) to determine the primary
modes of oscillation in the current climate. The future climate analysis was based
on the output of a Global Climate Model (GCM) downscaled using an NWP model
(called a Regional Climate Model [RCM] in this context). However, because the
GCMs are known to lack some of the important teleconnection patterns such as
ENSO, the RCM results were projected onto the SOMs of the current climate
reanalysis. Then, a proxy climatology was built using a Monte Carlo simulation in
which days from the current climate reanalysis were selected at the frequency
modeled using the future climate RCM frequency for the same season and time of
day. This proxy climate was then adjusted by appropriate “climate change” factors
that were discerned in the difference between the reanalysis and the RCM model.
In this way, the team showed that one can estimate future potential changes in the
resource and model regional changes, but those projected changes tend to be
within about 5 to 10 percent of the current resource [81]. Similar work has been
accomplished in other regions of the world with similar resulting caps on the
projected change.

Quantifying Uncertainty

Because the atmosphere is a nonlinear dissipative system, it is sensitive to initial
conditions and inherently chaotic [82]. As a result, predictability is limited and
meteorologists work to quantify the uncertainty in their forecasts, including for wind
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speed and solar irradiance. The traditional approach to quantify that uncertainty is
to take an ensemble forecasting approach. To generate an ensemble of potential
solutions, modelers initialize multiple simulations by varying initial conditions,
boundary conditions, physics parameterizations, or the models themselves [83].
The goal is to represent a reasonable probability density function (pdf) of the initial
conditions that will evolve in time to a broader pdf representative of the forecasted
flow. The statistics of that predicted pdf will then predict the uncertainty in the
forecast. One typically finds that the mean of the ensemble produces a better
forecast on average than any single member. Additionally, the ensemble provides
probabilistic information that can be used to better integrate the renewable energy
into the grid. For instance, some utilities are finding that with probabilistic
predictions, they can dynamically allocate reserves more efficiently and
economically. They can also predict potential distribution line congestion and thus
take action to avoid frequency disruptions.

To fully represent the atmosphere would require hundreds of model simulations
[84,85]. However, the NWP simulations are quite computationally expensive, so
considerable research has been done to reduce that number using statistical
learning and Al techniques. As the number becomes less than statistically ideal,
the ensemble requires calibration. A pdf should be centered (the bias is removed),
sharp (it distinguishes events), and reliable (the percentile predicted equals the
percentile observed on average). Calibration acts to correct an imperfect ensemble
to statistically represent the actual predicted variation. A straightforward method is
Linear Variance Calibration [84,86]. This method recognizes that a reliable
ensemble has an error variance that equals the variance of the ensemble pdf. So
using historical data, the slope and intercept of the line fit between the two
quantifies the error. Once those parameters are estimated, they can be used to
correct, or calibrate, the ensemble in the future. Additional Al and statistical
learning methods, including Bayesian Model Averaging [87,88] and quantile
regression [58,89], among others, have also shown success at calibrating the
uncertainty estimates.

Lee et al. [90,91] showed that if an NWP physics ensemble is clustered so as to
distinguish the connections between members, one can eliminate redundancy by
running merely a single member of each cluster and then calibrating the reduced
ensemble. The research demonstrated that a 10-member ensemble that was
calibrated using Bayesian Model Averaging produced comparable results to a full
42-member ensemble that was similarly calibrated.

Given that Al is useful for reducing the size of an ensemble, the next logical step
is to design methods intelligently to forecast uncertainty with a single member. That
goal has been accomplished using a method known as the analog ensemble
(AnEn) [92,93]. The AnEn method uses a single high-quality NWP simulation with
a sufficiently long time series (preferably a year or more) of historical predictions
and their matching observations. The AnEn begins with today’s forecast and
searches the historical database for similar historical forecasts. Next, it identifies
the validating observations for those most analogous forecasts and assembles
them as a pdf, creating the AnEn. That ensemble is then used to both improve on
the deterministic forecast and to quantify the uncertainty of the forecast. This
method has been shown to produce an ensemble that is as correct and reliable as
many of the best NWP ensembles of national centers [92,93], and has been
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applied to wind energy [92,94] and solar power [95]. Figure 5 shows an example
of three days of an AnEn solar irradiance forecast for a site near Sacramento,
California. Not only does the AnEn improve upon the deterministic forecast, but it
also allows the display of useful uncertainty information.

Figure 5. Example of three days forecast with the AnEn (yellow dashed) applied on top of the DICast
prediction (red) as compared to observations (black). Uncertainty bars are in blue.

A Look to the Future

With Advances in Al, Where Will This Go?

Al methods are certainly not new, but they have begun advancing again rapidly in
the past 5-10 years, showing promise for all types of applications. These advances
are starting to impact renewable energy applications, particularly forecasting.
Some of the newer methods, such as the gradient-boosting methods, have rapidly
become more mainstream and are being used more widely. Some of the newest
Al advances include deep learning, which is beginning to be applied in a few places
as discussed below.

The community is communicating regularly at conferences, workshops, and
special sessions, which helps advance the state of the science. Some of the best
methods blend knowledge of physics and dynamics to improve forecasts. This
combination extends beyond using Al to optimize blending of physics models, as
described above. It also includes intelligently choosing variables to use in training
the Al models as well as how to derive variables based on physical relationships
that may improve the output of the Al model.

The needs of the users are also becoming more sophisticated. Users have become
used to relying on renewable forecast information and are starting to ask for more
estimates of uncertainty in the forecast and variability forecasts to fine-tune their
decisions. The meteorological and Al community are glad to comply as discussed
below. We will see these Al applications enable yet more renewable energy.
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Deep Learning and Its Potential Renewable Energy Forecasting
Applications

Deep learning techniques have garnered a large amount of interest from the
broader machine-learning community in recent years because of their success in
image classification and speech translation [96]. Deep learning improves
predictive accuracy by learning data representations with multiple levels of
abstraction that discriminate between different classifications more distinctly [96].
Unlike traditional feedforward neural networks, deep-learning models, such as
convolutional neural networks, contain multiple specialized layers that can identify
features at different scales and levels of complexity and combine those features in
an optimized fashion to produce more accurate predictions. Deep-learning
methods provide the greatest amount of improvement over traditional machine
learning methods when they are trained on minimally processed image or time
series data because they build their own feature sets from the raw data.
Convolutional neural networks, which learn sets of convolutional feature maps
applied to gridded data to transform that data into a more interpretable format,
have shown a lot of promise for analyzing the observational and gridded forecast
datasets used in meteorology and other earth sciences [97].

Convolutional neural networks have the potential to improve predictions at all
forecast lead times for renewable energy predictions. For very short-term
predictions, convolutional neural networks can identify cloud types from sky
camera data [98]. Training a convolutional neural network from scratch requires a
very large image dataset, which is often not available for most specialized
problems. However, many images can be described well with similar sets of small-
scale features, so researchers have transferred the convolutional layers from
networks trained on a general set of images and only trained the fully connected
layers on the smaller set of specialized data. In Ye et al. [98], this approach yielded
large gains in accuracy compared with existing cloud identification methods.

Convolutional neural networks could also be used to identify spatial features in
gridded meteorological data and translate those features into renewable energy
predictions. By identifying the presence of weather patterns favorable for
cloudiness or rapid changes in wind speed, the convolutional neural network may
be able to generate more informed predictions than models relying on model
output from the nearest grid point to a location of interest. In particular,
convolutional neural networks could identify the combinations of fine- and coarse-
scale weather features that result in rapid changes in wind and solar irradiance.

Forecasting Variability, Quantifying Uncertainty

Most Al renewable energy forecasting systems focus on the average value of wind
speed or solar irradiance over the time periods of interest, but the average value
does not provide users with information about the number of large fluctuations
possible within a given period. If large fluctuations in power are more likely to occur,
then the electricity provider would require more reserve power to balance the load
[47]. Because power variability also depends on the local weather conditions at the
generation site, similar Al techniques and input variables can be used to forecast
variability as are currently used to forecast average power. The challenge is
determining the most appropriate variability metric for a user. McCandless et al.
[47] predicted the 15-minute spatial and temporal standard deviations of solar
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irradiance using a decision-tree regression model and produced consistent error
amounts in the one to three-hour lead time range. Lave et al. [99] quantified solar
irradiance variability in terms of the distribution of ramp rates, which describe how
much the power or irradiance changes between measurements. Sites in Hawaii
and Puerto Rico recorded more variability on average than sites in California and
Arizona [99]. Standard deviation is easier to interpret, but it does not provide any
information about the frequency of changes, whereas the ramp-rate distribution
accounts for those temporal changes.

Variability forecasts should not be confused with estimates of forecast uncertainty.
The amount of uncertainty is a function of the forecast system and its design, while
the amount of variability is a function of the observed phenomena and how it is
observed. Uncertainty is dependent on the lead time of the forecast, the amount
of available information, and the configuration of the forecast model being used.
The amount of variability is dependent only on the space and time intervals
specified for aggregation. Variability forecasts can be deterministic, or they can
incorporate additional uncertainty information. Uncertainty estimates around
forecasts of a mean quantity are not guaranteed to reflect the variability of that
quantity within a given time period. End users should carefully consider what
uncertainty and variability information they need from their power forecasts to be
prepared for fluctuations in their electrical generation system.

As storage becomes more available, it will allow smoothing of the variability of the
renewable resources. However, to optimize when to store and when to dispatch
power will still require accurate forecasts.

Summary and Conclusions

Because renewable energy is growing rapidly, it is impacting operations of the
energy sector as well as DoD’s planning and use of power. Renewable resources
are variable and depend on weather information; thus, its efficient and economic
use depends critically on having accurate forecasts of available power at multiple
time scales to enable using it to balance electrical load. At the short scale of the
next several hours, forecasts are required for grid integration and ensuring a
reliable and economic energy supply. For day-ahead unit allocation and planning,
one must have forecasts on these scales. Longer-term planning for maintenance
and deployment requires forecasts on scales of weeks, months, seasons, and
decades. At all of these scales, optimal predictions rely on knowledge of the
physics plus skilled use of Al and statistical learning methods to optimize the
forecasts.

The meteorological and computing communities have collaborated to produce
methods to optimize forecasts, using forecasting technology from statistics, Al, and
NWP. The Al methods are advancing prediction capabilities beyond the accuracy
of the physics alone.

But atmosphere flow is inherently chaotic, implying a limit to predictability. Thus,
as the skill of the forecast improves, operators are learning to use information on
the variability of the resource and uncertainty in the forecasts, while also finding
other uses for such information. As technology increases in complexity, so do its
applications.
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3

Biometrics, Critical Infrastructure Protection, and
Homeland Defense and Security

Anthony Rucci, Information International Associates
Gregory Nichols, Homeland Defense & Security Information Analysis Center

Applications of Al across biometrics, CIP, and HDS have the potential to integrate
so well that it seems appropriate to discuss all three topics at once. For example,
DHS is testing AVATAR, which uses Al algorithms to screen passengers at border
crossings and airports [1]. AVATAR detects physiological responses and biometric
features to determine if a passenger is trustworthy. Once a person passes this test,
they can move on in their journey; if they do not pass, then a secondary screening
is performed by a human. Utilizing technologies such as AVATAR to identify bad
actors attempting to infiltrate airports and airplanes might help improve the safety
of Transportation Systems, considered one of DHS’s 16 critical infrastructure
sectors [2]. The protection of critical infrastructure, such as commercial aviation,
falls under the aegis of homeland security: “the national effort to ensure a
homeland that is safe, secure, and resilient against terrorism and other hazards
where American interests, aspirations, and ways of life can thrive to the national
effort to prevent terrorist attacks within the United States, reduce the vulnerability
of the U.S. to terrorism, and minimize the damage from attacks that do occur [3].”

Advances in Al have led to numerous tools that are useful to the DoD and military
for homeland defense. Al's ability to recognize patterns in culture, conflict, and
crises creates an avenue for progressive simulation and autonomous aid. Much of
Al use for homeland defense comes in the form of simulating specific scenarios.
Using Al could be useful in general avenues of research such as simulation for
military planning, simulation for warfighter and troop performance enhancement,
and programming for autonomous vehicles and robotics for deployment in areas
unsafe for humans. Al could be instrumental in a wide area of military life—from
running computer-based simulation strategy for war-games and assessing the
mental health of soldiers, to modeling battlefield scenarios that gauge
psychological functioning and decision-making in high intensity environments.

A lesser-known application for Al use in the DoD is computational social science
programs that can aid in military operations [4]. The creation of training platforms
enhances interpersonal cohesion such that soldiers from varied backgrounds are
able to work well as a unit [4]. Al based simulation has been extended to
characterizing the behavioral signatures of adversaries through modeling complex
historical conflicts and current global conditions [5].

Recognition-primed decision (RPD) theory attempts to define the thought process
that effective decision makers employ in complex situations [6]. The development
of Al based pattern recognition algorithms coupled with tenants of RPD theory
allow for aid in crisis management and risk assessment practices. Applications
include HAZMAT emergency and firefighting responses [7] and the ability to predict
challenges to national security by violent actors aiming to do harm through
counterinsurgency and terrorism [8].
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Implementation of Al in autonomous machines provides an avenue for advanced
military robotics. Generally, military robots are defined as mechanical systems that
(1) possess the capacity to sense their surroundings, communicate information,
and make decisions; (2) can act autonomously according to predetermined rules
or under human supervision; (3) are capable of improving their own performance
through machine learning [9]. The addition of Al to these systems will provide
military robotics with the ability to make real time decisions on a plan of action
based on pattern recognition derived from historical and mission critical information
caches. Al-supplemented military robots will support reconnaissance, explosives
detonation, medical evacuation, and advanced weaponry [9].

A significant part of HDS involves weapons development. In terms of
weaponeering, Al is currently used in over 280 weapons systems [10], with the
majority of these applications being homing capabilities. Since 1965, autonomy
and related technologies, including Al, in weapons platforms have increased in
general. Weapons development is primarily covered by the Defense Systems
Information Analysis Center, so the topic will only briefly be covered here; however,
it is worth discussing some of the concerns of Al weaponry and related defense
challenges, as these new technologies could pose a security risk to the U.S.
homeland in the future. DoD is already exploring options to combat the use of Al-
capable weapons. In December 2015, during a speech hosted by the Center for a
New American Security, Deputy Secretary of Defense Bob Work commented on
the Third Offset and stated, “Now, we believe, strongly, that humans should be the
only ones to decide when to use lethal force. But when you're under attack,
especially at machine speeds, we want to have a machine that can protect us [11].”

In October 2016, at the Center for Strategic and International Studies, Secretary
Work remarked: “The pacing competitors—not adversaries—are Russia and
China, because they’re developing advanced capabilities that potentially worry us
[12].” This statement appears to ring true as China and Russia are investing
heavily in Al research for military applications. In August 2016, Wang Changging,
director of the General Design Department of the Third Academy of the China
Aerospace Science and Industry Corporation, claimed Chinese engineers have
spent years researching the use of Al in missiles [13], and they are currently
developing intelligent cruise missiles similar to the Tomahawk. In the 1970s,
Russia developed one of the first missiles to use Al, the Granit missile (SS-N-19
Shipwreck). They are now replacing the Granit with smaller Al-guided P-800 Oniks
missiles (SS-N-26 Strombile). The smaller size means almost three times as many
missiles can be loaded on to ships [14].

In testimony to the Senate Armed Services Committee in 2016, Admiral Harry
Harris, commander of USPACOM, requested that Congress authorize the
purchase of the new Long Range Anti-Ship Missile (LRASM) [15]. The LRASM is
completely autonomous, so after a human operator tells the missile which ship to
target and where the fleet is, Al handles the rest and uses a continuous stream of
data to correct course until it hits its target.

As an example of military robotics, in April 2017, Russia released video footage of

their Final Experimental Demonstration Object Research (FEDOR), a bipedal
robot capable of duplicating many human movements such as driving, giving first
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aid, handling tools, and even shooting. Russia claims that FEDOR will replace
astronauts on the International Space Station [16].

Efforts to counter Al weaponry are under development as the U.S. emphasizes
machine learning. In addition, Al is employed in other platforms to combat non-Al
weaponry. The Synchronized Net-Enabled Multi-INT Exploitation utilizes
“advanced intelligence-collection and rapid-response capability” to identify
weaknesses in an enemy’s operations [17]. In July 2017, Colonel Drew Cukor,
head of the Algorithmic Warfare Cross Function Team, stated that the U.S. will be
using algorithms by the end of 2017 to sort through intelligence data and make
decisions for combating groups such as the Islamic State more efficiently and
effectively [18].

Al is increasingly used to process biometric data. Humans have a number of highly
individualized characteristics, most notably their fingerprints. Historically, latent
print examiners interpreted fingerprints for identity verification, but a large-scale
study conducted by Carnegie Mellon University reports that 85 percent of
examiners made at least one false negative error [19]. This study exemplifies the
need for advancing biometric identification technology. The research conducted
on biometric analysis pinpoints a variety of personal characteristics that can greatly
increase the accuracy of identification protocol.

The biometric identification process involves matching user input data—a
fingerprint scan for example—with information from a specified cache of data.
Algorithms will sort through the cache of data and search for information that
matches what the user has input. Limitations of biometric technology are reliable
data caches, processing power, and the resolution of input data. The pattern
recognition and predictive capabilities of Al algorithms are well suited for
information processing.

Global reliance on technology has increased the amount of available digital
information. Sifting through this information rapidly is necessary for real time
biometric identification. The DoD is addressing this problem by narrowing the
cache of information that is necessary to process. Catalogs contain visual, audio,
and hyperspectral data through which an Al algorithm can search. This
functionality enables multimodal biometric identification by matching personal
characteristics such as facial structure, height, gait, and skin pigmentation
recognition [20]. Audio files containing examples of an individual’s voice and
speech patterns can be used as biometric identification tools as well [21, 22]. Even
information not typically thought to be personal characteristics such as keystroke
pattern, hand geometry, vascular orientation, and clothing recognition are used as
platforms for Al biometric identification [23-25].

Al is useful in feature selection, the act of discarding unnecessary data in order to
reduce processing time and increase identification accuracy. For example, an
audio file of a conversation between two people in a crowded restaurant contains
background noise such as the clanking of silverware, people from surrounding
tables, etc. Elimination of the irrelevant data is necessary for speaker identification,
which is where Al excels. Machine learning allows Al algorithms to perform tasks
with increasing accuracy after each iteration. In other words, machine learning
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helps the Al to continually recognize and extract information on specified features
with a higher degree of certainty.

Future applications of Al-assisted biometric recognition technologies might include
passenger screening at airports, border security, and identification of persons of
interest to the DoD [26]. A U.S. Air Force study ranked image processing and Al
in their top 11 of 43 key technologies to develop by 2025 [27]. Extensions of
biometric identification will enhance battlefield support through Al-supported
combatant recognition and smart weaponry [26], as demonstrated by the Super
aEgis Il .50 caliber machine gun, which has the capability to recognize and target
human faces [28].

Integrating Al into CIP, particularly cyber-physical systems, has been more
challenging than the incorporation of Al into other areas, primarily due to safety
and security concerns regarding the possibility of catastrophic failure. A recent
DHS report [29] acknowledges the benefits that Al could play in critical
infrastructure protection. The report also noted several risks from adoption and
potential safety measures to mitigate those risks. Consider the context of using
monitoring capabilities that already exist in traditional networks and adding Al
technology to determine anomalous activity. Based on its telemetry, Al might take
action autonomously based on a predetermined system setting, a range of
acceptable norms sensing change, or a “perceived change” in the data being
ingested into that controller. The indicators of compromise would trigger pre-set
responses without human intervention. While on the surface this might sound like
an exceptionally efficient model, a question remains: if unsupervised, what actions
might the system take that might trigger a catastrophic chain of events?

The ultimate reward for an adversary would be to disrupt one or more segments
of U.S. critical systems. Our enemies will likely place a lot of effort in compromising
critical nodes such as our Industrial Control Systems, Supervisory Control and
Data Acquisition, Distributed Control Systems, or Programmable Logic Controllers.
Since the establishment of the Commission on Critical Infrastructure Protection in
1996 by Executive Order 13010, each and every one of these devices and systems
has been recognized and acknowledged as critical to the complex interconnectivity
to our nation—"Their incapacity or destruction would have a debilitating impact on
the defense or economic security of the United States [30].” Consider the potential
damage caused by a slight alteration of a single line of code for an Al system
controlling the gates of the Hoover Dam. The effects of 10 trillion gallons of water
suddenly released from Lake Meade would result in a horrific catastrophe [31].

Adversaries of the U.S. designate all critical infrastructure as high value targets,
drawing their constant attention and interest from a technical targeting perspective.
Defending the security systems, public-facing networks, and internal industrial
controls is paramount to the life and safety of the people in the vicinity of such
critical infrastructure. Moreover, this defense is vital to our nation as a whole,
through our national strategy. The use of Al for biometrics, HDS, and CIP brings
both promising innovation and efficiency as well as potential new risks. The key
will be to maximize the benefits of Al while minimizing risks and mitigating
complicated safety and security challenges.
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4

Chemical, Biological, Radiological, and Nuclear
Defense/Weapons of Mass Destruction

Joel Hewett and Gregory Nichols, HDIAC

U.S. warfighters have already deployed Al and machine learning technologies on
the battlefield—or, rather, approximately 10,000 feet above it. In December 2017,
DoD’s newly-commissioned Algorithmic Warfare Cross-Functional Team
successfully deployed an Al-enabled tool in an operational theater for the first time
in American military history. The effort, known as Project Maven, applied an object
recognition algorithm to the live video feed of unmanned aircraft systems engaged
in surveillance during Operation Inherent Resolve to analyze the drone’s reams of
footage to generate actionable intelligence [1].

Al promises to drastically reduce the amount of time and effort needed to perform
“tedious work,” such as “low-level counting activity” and data entry, which will allow
for quicker analysis of still-image and video stream datasets to identify major
threats [1]. Moreover, prominent defense analysts have highlighted imagery
analysis as one of Al's most “remarkable capabilities” suited for near-term military
use [2].

Al-enabled imagery analysis is likely to be used for the detection and monitoring
of CBRN and WMD threats and assets. Former Deputy Defense Secretary Robert
Work, who established Project Maven, said in November 2015 these programs
could soon be used to efficiently monitor worldwide WMD sites, triggering an alert
when a “facility is moving from a benign posture to a threatening posture [3].” Such
monitoring may also be further tailored to search for specific assets types, such as
“a [ballistic missile] transporter that's 15 meters long, 4.7 meters wide,” Work
offered as an example [3].

While at the time of writing Project Maven is not explicitly focused on CBRN or
WMD threats, its status as DoD’s first field deployment of an Al-enabled
warfighting tool—and the unique and critical role that imagery analysis plays in the
CBRN Defense and Countering WMD missions [4,5]—make it an exemplar of the
state-of-the-art in this subfield. The parameters of Project Maven closely reflect
how Al and machine learning algorithms are most likely to be applied by DoD to
the CBRN/WMD defense mission over the next 5 to 10 years. This general point
is supported by two conclusions drawn from HDIAC’s technical analysis of the
project, both of which are elaborated on in the next section:

1. Al-enabled imagery analysis software for CBRN/WMD applications is
years—if not a decade or more—away from functioning in the “plug-
and-play” mode desired by civilian as well as uniformed DoD leaders.

2. Future deployments of Al-enabled algorithms for imagery analysis are
all but certain to grow increasingly processor-intensive, suggesting that
machine learning engineers must codesign Al software and supporting
hardware simultaneously in order to deliver workable applications
useful to DoD activities.
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Project Maven

Ultimately, technologically-minded strategic thinkers and military leaders hope to
apply the immense computing power of Al-based systems to sensoring systems in
a modular, self-contained configuration. Indeed, when speaking to Seapower
magazine in May 2016, CPT Jeffrey J. Czerewko, now Commander, Naval Air
Force, U.S. Pacific Fleet, described his vision for Naval Al with exactly that tenor
of language. He described ideal field-deployable machine learning systems as
“platform and domain agnostic” in their use, capable of being hooked up to any
existing sensor system as “little black boxes” whose internal workings will require
no specific maintenance or continual monitoring [6].

That vision remains powerful, and—it should be noted—fully viable. However,
through the end of 2017, Project Maven has demonstrated the infeasibility of
delivering this advanced type of “plug-and-play” capability for American warfighting
use in the medium-term.

First, the construction and coding of Project Maven’s foundational object
identification algorithm was labor-intensive and slow. Program staff manually
identified and labeled more than 150,000 images simply to build the starting
dataset from which the Al algorithm would teach itself to analyze drone footage [1].
Continued use of the imagery analysis system beyond its initial deployment date
will require the manual cataloging of as many as 750,000 additional images into
the dataset. This will be performed to:

e optimize the algorithm’s performance to match the distinct attributes of
its specific desert environment [1]

e decrease the likelihood of the system committing misidentifications due
to noisy or substandard image quality [7]

e defend it from disruptive or adversarial attempts to trick or spoof its
computer vision [8]

The same requirements for operational maintenance will apply to Al-enabled
systems implemented in the near-term, until more general-purpose technological
imagery pre-processing programs can be developed to shorten the period needed
to train an Al-enabled machine program to begin teaching itself. Indeed, CNA
recently noted that “little attention” has been paid to the “amount and kind of data
necessary to train military Al systems” [9].

Second, despite the immense amount of computer processing power available to
DoD entities (to tap or directly procure), Project Maven’s Al-enabled analytical
code once compiled required the assembly of custom-built IT hardware to support
its operation [1]. Even when the Al was training itself on only the base dataset of
150,000 images, its operations-per-second load was so processor- and graphics-
intensive that it was deemed unable to run off pre-existing DoD networks, including
those that were fully cloud-based [1]. The requirement of bespoke coding and
engineering labor in operating an Al-enabled tool for a single video feed is not a
workable proposition beyond the immediate near-term.

This challenge is a novel one even for Project Maven’s state-of-the-art system
architecture. Previous instances of Al-enabled imagery analysis systems, typically

Distribution A: Approved for Public Release; Distribution Unlimited



54 SOAR: Artificial Intelligence and Machine Learning for Defense Applications

ensconced in the laboratories of R1 academic research institutions and highly-
capitalized private enterprises, have simply drawn on brute force processing
resources to operate. When Google designed an Al-equipped neural network in
2012 to sort through millions of YouTube videos and images to recognize cat
pictures, the search company’s team simply assembled an array of 16,000
standard-run, commercially-available central processing units (CPUs) to perform
the feat [10].

However, future iterations of the Google Al system (renamed Google Brain shortly
thereafter) butted heads against fundamental limitations posed by current
computing hardware. During 2016 and 2017, Google engineers turned to an
emerging, little-known type of processing chip to boost their network’s nameplate
processing capacity. Tensor processing units (TPU) promise to enable Al-system-
wide performance improvements as much as 30 times greater than previous chips
[11]. In mid-2017, Google installed an even more powerful version of the initial TPU
model with positive results [12].

Notably, even given the relative simplicity of Google’s unplug-and-replace
operation (removing CPU and graphics processing units to make room for the
tensor units), the effort was not a simple upgrade job. The TPUs required many
months of debugging and software-hardware integration work before they could
even function [13].

CBRN/WMD Imagery Analysis

As the 2017 National Security Strategy of the United States of America stresses,
the detection of WMD assets remains a key priority action for the nation’s defense
community. The strategy states that the United States will “better integrate
intelligence...operations to ensure that frontline defenders have the right
information and capabilities to respond to WMD threats” [14]. Elsewhere, the Army
has called upon the scientific and technical enterprise of the nation to help provide
next-generation “environmental monitoring and threat warning services” for DoD’s
global ballistic missile defense mission [15]. Therefore, delivering capabilities to
achieve this mission has been of high interest to Al researchers and engineers.

In July 2017, researchers at the University of Missouri reported the results of a
landmark effort to apply deep convolutional neural networks to the analysis of
Chinese surface-to-air missile (SAM) launch sites. (These sites display a
distinctive configuration, typically characterized by the presence of four to six small
launch pads, set in a broad symmetrical and circular shape [16].)

Drawing upon a training dataset of around 1.6 million open-source images of
known SAM sites, the researchers restricted the Al program’s access to no more
than 100 such positive or affirmative image examples from which it could learn.
They then directed the program to conduct a broad-area survey of satellite imagery
collected over 55,078 square miles of terrain in southeastern China. The study
trained multiple Al-enabled algorithms to auto-select potential candidate sites and
prioritize them for imagery personnel to analyze (see Figure 1).
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Figure 1. Web user interface used for human review of Al-identified and ranked candidate SAM sites.
The image on the left presents a contextual view of a candidate site, while the image on the right offers
a zoomed-in view of the site, providing the viewer with additional detail for inspection. This
candidate was correctly identified as a SAM site [16]. (Released)

By doing so, the system reduced the search area requiring human review to only
0.15 percent of the 55,078-square-mile search area. Moreover, this process, as
the authors explain, allowed “four novice imagery analysts with no prior imagery
analysis experience” to complete the site search nearly 81 times “faster than a
traditional visual search [conducted] over an equivalent land area...while achieving
nearly identical statistical accuracy” [16].

As the University of Missouri research effort, Project Maven, and Google Brain
make clear, an Al-enabled image analysis algorithm can train itself to detect and
identify nearly any type of target, provided that a sufficiently large training dataset
exists. In other words: replace the exceptionally small training set of SAM sites
(<100 images) with images of chemical weapons production facilities, biological
weapons testing sites, or radioactive material extraction fields—and Al-enabled
programs will significantly advance the CBRN/WMD defense missions of the
United States.

Emerging Hardware Considerations

As the experience of Project Maven indicates, hardware and processing power
access considerations are likely to place limitations on black box-like applications
of Al-enabled algorithms for imagery analysis in the medium-term. This issue is
apparent in the SAM identification study performed at the University of Missouri:
when using the reduced final training set of <100 images, the fotal processing time
for the neural network program was roughly 23 hours, even when performed on a
high-powered commercial-grade desktop computer station with a high-rate
connection to network attached storage [16].
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As Google’s experience with TPUs makes clear, the path forward to achieving Al-
enabled analysis faster and more generalized lies, in part, with the development
of hardware specifically designed and optimized for Al use. Multiple leading firms,
including Nvidia, Intel, Qualcomm, ARM, and Microsoft are indeed seeking to do
just that [17,18]. In the far-term, the usefulness of Al in the analysis of massive
datasets may depend on successful yet-to-be-determined developments in
guantum computing and/or neuromorphic spiking neural nets [19]. As the Defense
Science Board noted in 2016, “technology advances in high-throughput,
embedded processing, and machine learning offer the promise of onboard
processing of high-resolution, multi-source airborne ISR sensor data” [20].

In order to place Al-enabled imagery analysis at the edge of deployed platforms—
or as close to the field as possible—future systems will need to be designed with
both hardware and software components in mind. DoD has already taken some
steps in this direction [21].

R&D removed from the operational side of Al-enabled systems has recently
underscored this future path of development. In December 2017, after conducting
a comprehensive review of Al-enabled uses of deep-learning neural networks, a
team of engineers and entrepreneurs from MIT and Nvidia cautioned that the
continued design of Al systems untethered to specific hardware considerations
would reduce their accuracy and efficiency. Instead, systems engineers should
codesign algorithm models and hardware contemporaneously, to both “maximize
accuracy and throughput, while minimizing energy and cost” [22].

Conclusion

DoD leaders have stated that the most promising yet untapped datasets collected
by their forces are image- and/or video-based. As technology and national security
analyst Gregory Allen explains:

Every day, US spy planes and satellites collect more raw data than the
Defense Department could analyze even if its whole workforce spent their
entire lives on it. [...] Unfortunately, most of the imagery analysis involves
tedious work—people look at screens to count cars, individuals, or
activities, and then type their counts into a PowerPoint presentation or
Excel spreadsheet [1].

“Worse,” Allen concludes, “most of the sensor data just disappears—it's never
looked at—even though the department has been hiring analysts as fast as it can
for years [1].”

Plug-and-play applications of Al in the CBRN/WMD detection space remain years
away from operational use. For DoD to tap into the wealth of imagery sensor data
it collects every day, future efforts in this subfield must: (a) investigate ways of
streamlining algorithm coding and self-training procedures and (b) work in tandem
with hardware manufacturers to codesign machine learning hardware-software
systems that optimize the function of both.
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Introduction

The applications of Al in medicine are wide-ranging. Medicine in general, and
disease diagnosis in particular, has evolved through the development of precise
objective biomarkers for disease detection. For example, diabetes can be
definitively diagnosed by the assessment of blood glucose levels. These objective
and replicable biomarkers are sparse in certain fields of medicine, such as mental
health, which are relevant to the defense community. In fact, one of the primary
applications of machine learning, a subfield within Al, is identifying clinically
relevant biomarkers that are reproducible and can be used to identify disorders on
an individual subject level. Of specific interest to the defense community are
diseases such as post-traumatic stress disorder (PTSD) and post-concussion
syndrome (PCS), a sequel of mild traumatic brain injury (mTBI), which have high
prevalence rates in military veterans [1,2].

The standards required for single-subject predictions that are necessary for
automated disease diagnosis are more rigorous than group differences identified
from population-level statistics. Therefore, the findings from previous studies
identifying group differences in brain function are not directly applicable while
searching for biomarkers. This necessitates the use of machine learning in
neuroimaging applications [3]. Fortunately, the number of studies exploring single-
subject prediction in mental health disorders has increased exponentially in recent
years with more than 500 papers published in the past quarter century (see Figure
1) [3]. Apart from diagnostic classification, Al in medicine can also be used for
monitoring disease progression and treatment response.

Figure 1. A bar plot showing the number of studies performing single-subject
disease predictions over the past 22 years for several neurological and mental
health disorders.
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Below, we detail the applications of Al, especially machine learning in mental
health disorders and the available opportunities in emerging fields, such as
multimodal data fusion, deep learning in neural imaging, and data sharing
initiatives. In each section, we examine some of the challenges that must be
addressed to realize the full potential of these applications.

Applications of Al in Mental Health Disorders and Brain Injuries

Mental health disorders arise out of complex alterations of the brain. Distinct neural
signatures have been observed for healthy and clinical populations [4]. Al can aid
in diagnosis and prognosis of neurological disorders, including in PTSD, a disorder
that develops in individuals exposed to traumatic situations. It can also aid in
identifying potential suicide attempters.

Although machine learning has limitations, it can help identify biomarkers for
diagnosing spectrum disorders. These disorders show distinct pathologies with
multiple etiologies under the umbrella of the same diagnostic category. Spectrum
disorders include not only autism spectrum disorder (ASD), schizophrenia, and
attention-deficit/hyperactivity disorder (ADHD) but also PTSD. A binary distinction
between controls and disease populations ignores the underlying heterogeneity of
these disorders in the general population.

Machine learning, especially unsupervised learning (in which the machine learning
algorithms clusters data, unguided, based on similarities they identify), can help
with the sub-categorizations of such disorders by identifying novel sub-types of the
disease and improving sub-groupings in a data-driven way. For example, data-
driven groupings of subjects are reported to be superior to conventional diagnostic
groupings [5,6]. Studies using supervised machine learning are more limited. In
supervised machine learning, in which the algorithm is trained by providing output
variables (e.g., ranges within a set of parameters yield a diagnosis of PTSD), the
performance of the algorithms is constrained by the clinical labels associated with
the data and the ability of current clinical diagnostic instruments to accurately
capture the underlying neurobiology of the disorders. Hence, the best possible
performance will mimic the disease labels obtained from clinical assessment and
is thus constrained by their errors and limitations [7].

A case in point is the diagnostic label associated with spectrum disorders such as
ASD, which are highly heterogeneous and have large symptom variability. In such
cases, the label might not be entirely informative, thus limiting the identification of
reliable biomarkers [3]. Some other issues associated with automated disease
diagnosis for clinical applications are high comorbidity of neurological disorders
and differential diagnoses of disorders with different etiologies but overlapping
symptoms [8]. Examples of disorders with overlapping symptoms include
schizophrenia, bipolar, unipolar and mood disorders [8] as well as PTSD and
PTSD associated with PCS/mTBI [5].

Unfortunately, despite the serious nature of PTSD, the current methods for
diagnosis rely on self-reported symptom scores and clinician observation. PTSD
has a high prevalence in combat veterans and high comorbidity with PCS/mTBI.
Symptoms of PTSD and PCS overlap, complicating diagnosis and treatment.
Because the underlying etiologies appear to be different, though, machine learning
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and neuroimaging can help [5]. Similar work has been applied to ADHD diagnoses
[9]. Resulting objective assessments can help in making “return to duty” decisions
and also prevent malingering and false insurance claims. Such efforts are already
underway with Rangaprakash et al. identifying elevated static brain connectivity
and reduced dynamic brain connectivity in veterans with PTSD compared to
controls [5], with such measures providing predictive power at the individual
subject level. It must be noted that such studies must be replicated in larger
samples to be useful as a potential biomarker. Progress is also being made in
using algorithms to detect repeated mTBI, which is laborious to diagnose manually
from MRIs because of the small lesion sizes [10,11].

Suicide occurs at a higher rate in the U.S. military than in the general population,
in part because of military age demographics, gender demographics [12], and
access to firearms [13]. Al applications to suicide prevention are being employed
to refine the results of psychometric questionnaires, better identifying potential
suicide attempters. Support vector machines, a variety of supervised machine
learning, have refined the results of the Barratt Impulsiveness Scale Version 11
and International Personality Disorder Examination - Screening Questionnaire
psychometric tools to better weight questionnaire responses [14].

Al and data mining have also been used to create decision trees psychometric
results [15]. In each case, researchers compared suicidal participants to non-
suicidal participants to model the weights of risk factors. Al work in suicide
prevention relies on psychometric questionnaires, though, and early detection of
suicidal ideation may be hindered by active duty personnel’s reticence to report
ideation [16,17] and thus present psychometric data.

Classification Using Multimodal and Phenotypic Data

Any single imaging modality (e.g., single-modality MRI) may not capture the subtle
differences in the underlying neuropathology for all neurological disorders.
Combining image-based features from several imaging modalities (e.g., structural
MRI and resting-state functional MRI, or rs-fMRI) usually gives better classification
performance than any single imaging modality for disease diagnosis [18,19].
Several resting-state functional connectivity (RSFC) studies ignore the richness of
the temporal information and use static connectivity measures for classification.
Using dynamic connectivity measures that capture the synchronization of brain
regions across time have better sensitivity to neurological disorders and result in
better accuracy [20]. Combining phenotype information, such as cognitive and
behavioral scores and demographic information, along with clinical
measurements, often leads to even better performance than studies that utilize
imaging-based features alone [7,21-25]. These results stress the importance of
adding any measures sensitive to the presence or progression of the disease in
the classification model.

Deep Learning in Neuroimaging

Deep learning uses artificial neural networks to model non-linear relationships and
classify data. It has been successful in giving state-of-the-art classification
accuracies in computer vision, speech recognition, and language processing
[26,27]. In 2016, a program called Alpha Go, powered by Google’s DeepMind,
which utilizes deep learning, defeated the world’s top ranking human Go player.
DeepMind has already partnered with London hospitals for detection of eye
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diseases, such as macular degeneration and cancerous tissues in the head and
neck regions [28,29]. Unlike traditional machine learning methods, where the
optimal features need to be hand-coded using expert knowledge, deep learning
methods use complex non-linear transformations from the raw data to extract
optimal features to be used for classification.

Computer vision (CV) has applications in medical imaging for coronary structures,
chronic wounds, neuronal dysfunction [30], ophthalmic structures [31], and
cancers [32], as well as for training military medical staff without cadavers [33]. CV
has benefited from large sample sizes. The sample sizes used in typical CV
studies are orders of magnitude larger than what can be acquired from brain
imaging. For example, ImageNet, a standard dataset used to benchmark the
performance of CV algorithms, has more than a million data samples categorized
into 1,000 classes [3]. Further, in many CV studies, the size of the dataset is often
augmented by suitable transformation, such as rotation, shear, and scaling, on the
images and then the classifier is trained using the original and transformed images,
leading to better classification performances.

Deep learning in neuroimaging, on the other hand, has traditionally been
challenged by the problem of small sample sizes, limiting the usefulness of such
studies. Small sample sizes can cause overfitting, the problem of a model with
many parameters not handling a new dataset well, thereby not classifying properly.
Regularization strategies can help compensate for the smaller datasets and are
commonly part of current deep learning algorithms [7]. In fact, convolutional neural
networks, which use weight sharing, have been reported to give some of the best
classification performances in neuroimaging applications [7].

Transfer learning is another method that has been used to counteract the
limitations typical of neuroimaging datasets (the effects of small sample sizes, as
well as different data-acquisition protocols and site variability, which are discussed
below). In transfer learning, features learned using one dataset aid in solving
machine learning problems in another set of data [7]. For example, transfer
learning has been used in the classification of subjects with Alzheimer’s disease
using initial parameters learned from natural images [34] and another Alzheimer’s
dataset [35]. Recent studies have reported excellent classification performances
with deep learning methods [36-38]. A summary of classification studies using
deep learning methods is available in Vieira et al [7].

With the availability of large datasets, complex algorithms, such as deep learning
models with several hidden layers, could model the complex relationships between
the features by fine-tuning the parameters and capture subtle differences in the
brain function between the clinical and healthy populations. These differences
previously would have been left undetected by the use of simpler models applied
to neuroimaging data. An example illustrating the power of deep nets with multiple
hidden layers is shown in Figure 2.
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Figure 2. This figure illustrates the increased classification ability of classes with deep networks
projected on a 2D map. In the figure, each dot represents a subject. Classes that are not clearly separable
with shallow networks (depth 1 and 2) become increasingly separable with a deeper architecture (depth
3) [37]. (Released)

Data Sharing and Big Data Neuroimaging Initiatives

A number of limitations are being addressed by data sharing. As discussed above,
perhaps the biggest hurdle hampering the search for clinically relevant
neuroimaging biomarkers is small sample sizes, such as samples collected from a
single acquisition site. High accuracies reported in studies with small sample sizes,
which do not sample adequately from the entire population distribution, might not
generalize to larger heterogeneous disease populations. Further challenges
preventing identification of reliable biomarkers include small effect sizes, low
disease prevalence, and clinical and data heterogeneity. Even age and disease
maturation can vary imaging biomarkers because of the plasticity and dynamic
adaptability of the brain [4,39].

Data sharing and big-data initiatives offer significant advantages for the application
of machine learning algorithms in neuroimaging studies. Large sample sizes
capture the disease heterogeneity in the clinical populations, which is especially
useful for generalization of the results to new subjects. Results of studies with large
sample sizes and effect sizes are a first step in the translation of key findings in
research studies to the clinical setting. Big data initiatives promote exploratory data
analyses, compared to hypothesis-driven data analysis traditionally used in
neuroimaging studies [8]. Large-scale data sharing initiatives also promote the
principles of open science, and results obtained on such large datasets help in
reproducibility.

Data sharing initiatives hold the promise of providing an objective estimation of
performance (benchmarking), assessing current classification, and improving
classification, but must first overcome the lack of standardization. A key problem
is inter-site variability, such as variability in data acquisition protocols and
demographic and experimental factors, which Colby et al. [40] note limits the
usefulness of such multisite studies. Currently, single-site studies in which the data
from the same acquisition site is used for training and testing report much better
classification performances than when they are from distinct image acquisition
sites [40,41]. Studies using large heterogeneous samples report lower
performances [3].

Pooling the data from poorly coordinated retrospective multisite studies can yield

poor neuroimaging data. For example, in the ADHD-200 global competition,
researchers from the University of Alberta achieved a higher accuracy (62.5
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percent) using just phenotypic data than using neuroimaging-based metrics [42].
Continued efforts to share data should result in standardizing neuroimaging
protocols and coordinating acquisition protocols—which Milham et al. refer to as
“harmonizing” acquisition protocols—across imaging sites [8], making the resulting
classifications more clinically useful. In addition, data sharing allows researchers
to compare classification performances obtained by data acquired from different
data processing pipelines and classification models, which is currently impossible,
given that traditional studies use different datasets.

Several data-sharing efforts for both healthy and clinical populations are complete,
currently underway, or planned and are extending the range of specialists tackling
disease classification problems, especially pertaining to mental health. Examples
of such initiatives include the 1000 Functional Connectomes Project [43];
International Neuroimaging Data-sharing Initiative [44]; OpenfMRI [45]; U.K.
Biobank [46]; Human Connectome Project [47]; Autism Brain Imaging Data
Exchange [48]; ADHD-200 [22]; Alzheimer's Disease Neuroimaging Initiative [49];
Brain Genomics Superstruct [50]; and the Pediatric Imaging, Neurocognition, and
Genetics repository [51]. Machine learning contests such as the ADHD-200 Global
Competition and the Alzheimer’s Disease Big Data DREAM Challenge and Brain
Hack help people from diverse research backgrounds work on challenging
problems in neuroimaging, and the availability of preprocessed datasets (e.g., The
Preprocessed Connectomes Project [52]) have reduced their barrier to entry even
further [8].

With a large amount of data collected from multiple sites, there is renewed
optimism in the search for reliable neuroimaging-based disease biomarkers that
generalize well to the larger population. Big data analyses in neuroimaging are
expected to accelerate with advancements in technology (particularly in storage
and computational power in both traditional and cloud computing), software that
can run in parallel on graphical processing units, and advances in our
understanding of machine learning and deep learning algorithms.

Additional Challenges

Cross-validation accuracy in multisite studies can also be an unreliable estimator
of the true predictive ability of the classifiers [53,54] due to hidden correlations in
training and the validation data. In addition, the applicability of automated
diagnostic tools limited for the general population could cause false positives due
to low disease prevalence in the general population. Furthermore, head motion in
neuroimaging adds spurious noise, which can significantly affect the validity of the
results obtained from the studies. Several studies have shown that head motion
alters RSFC based metrics in a distance-dependent way [55,56] can significantly
alter the classification accuracy in distinguishing controls from hyperkinetic
disease populations. Fair et al. [57], though, report that thorough motion correction
strategies could improve the classification accuracy.

Conclusion

Al in military-relevant medical applications has progressed significantly,
particularly in the domain of making diagnoses once reliant on patient responses
and clinician observation (e.g., PTSD and suicide risk) more objective and in using
clinically relevant biomarkers to monitor both disease progression and patient
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responses to treatment. Al is allowing the medical field to tease out the underlying
causes of conditions with similar symptoms but different etiologies. The strides the
field is making in neuroimaging are promising, and these are due in no small part
to moving beyond single imaging modalities to take advantage of richer sets of
data, to employing deep learning, and to overcoming small sample sizes through
data sharing initiatives.

Moreover, the use of Al in medicine can help usher in an era of precision and
personalized medicine. Precision medicine aims to tailor the treatment to an
individual or a group of individuals by stratifying them based on genetic,
immunological, and imaging profiles to provide the best possible treatment
response. By identifying the disease diagnosis, subtypes, disease progression and
treatment response, the goals of precision medicine can be achieved [8].

Additional progress must be made in standardizing both neuroimaging protocols
and data acquisition protocols to achieve the field’s goals of reliable single-subject
predictions, but researchers are actively pursuing those advances. These tasks
are challenging, but current data-sharing initiatives are giving specialists from
diverse fields an opportunity to join in this work. With interdisciplinarity comes new
perspectives, and blended expertise often ushers in new solutions.
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Conclusion

Al and machine learning represent the future of military systems, networks, and
processes. The imminent adoption of human-machine collaboration by DoD
components, as well as the desire of chief U.S. competitors (Russia and China) to
adopt fully autonomous systems, makes research in this area of utmost
importance. The optimization of Al and machine learning for military applications
remains a chief priority for DoD. Machine learning and Al were prominent in the
2014 DoD Third Offset Strategy. Instead of driving fully autonomous military
systems, machine learning and Al will function as force multipliers for DoD. This
strategy promotes an increased level of human-machine interfacing in military
systems without undermining the human'’s authority in key strategic decisions. This
vision emphasizes semi-autonomous vehicles, advanced computing, and
guidance and control systems that require human involvement to make decisions
in battle contexts. This policy stance, termed “assisted human operations,” outlines
the need for operating systems that use their computational power to give a tactical
advantage through lessening human error, while leaving big-picture strategic goals
to the human operator.

This report provides an overview of Al as it applies to HDIAC’s eight focus areas.
While not all-inclusive, the discussions contained herein demonstrate what is
currently possible in a variety of fields as well as where the data are lacking.
Although defense applications of Al often only focus on combat operations and
weapons development, this report illustrates that is not the case at all. Many other
areas, from renewable energy forecasts to medicine, play a pivotal role in defense
operations, and Al has the potential to enhance those areas, particularly to benefit
warfighter performance and enhance operational efficiency. This report can also
be thought of as a road map to future research needs. Areas such as medicine,
biometrics, and critical infrastructure have more developed Al potential but might
benefit from evaluations centered on ethics and emergency management,
whereas CBRN defense and WMD are nascent areas of Al research and deserve
deeper analysis.

The desired end-state of Al is to perform highly complex computational tasks,
under austere conditions, as a seemingly routine task with optimal efficiency and
minimal failure (more efficiently than humans in most cases). As with any
technology development, there is a certain amount of risk in the early stages and
numerous failures and setbacks along the way. At some logical point after
repeated benchmarking and successful proofs of concept, decisions to deploy or
go to market are made. Part of the challenge is a heavy industry influence to offload
human responsibility to Al. Researchers have made incredible leaps forward in Al
since the 1950s, but significant work remains. Continued research into how to use
Al and a better understanding of how to identify and mitigate risks are especially
crucial now as new breakthroughs occur almost every day and so many
organizations, including DoD, rely more and more on Al.
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